论文

基于CMIP6模式评估结果对未来青藏高原降水多情景预估

  • 李博渊 ,
  • 胡芩
展开
  • 成都信息工程大学大气科学学院,高原大气与环境四川省重点实验室,四川 成都 610225

李博渊(1999 -), 男, 河南巩义人, 硕士研究生, 主要从事青藏高原气候变化研究. E-mail:

收稿日期: 2022-12-02

  修回日期: 2023-03-28

  网络出版日期: 2024-01-11

基金资助

第二次青藏高原综合科学考察研究项目(2019QZKK0102); 四川省自然科学基金项目(2022NSFSC0230)

Multi-Scenario Projection of Future Precipitation over the Qinghai-XizangTibetanPlateau Based on CMIP6 Model Assessment Results

  • Boyuan LI ,
  • Qin HU
Expand
  • College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China

Received date: 2022-12-02

  Revised date: 2023-03-28

  Online published: 2024-01-11

摘要

青藏高原作为气候敏感区域, 其降水对东亚水文循环和气候有着巨大的影响, 因此对于其变化的研究十分重要。降水是全球水文循环的重要变量, 是受气候变化影响的重要气候系统之一, 为了探究全球气候模式对青藏高原降水的模拟能力以及探究在新模式、 新情景下未来降水可能变化, 本文使用耦合模式比较计划第6阶段(CMIP6)最新的31个气候模式逐月降水资料, 以及国家气候中心所提供的CN05.1降水观测数据集, 评估CMIP6模式对青藏高原降水的模拟能力, 并择优选择模式在不同共享社会经济路径情景下(Shared Socioeconomic Pathway, SSP)进行高原未来降水预估。结果表明: 1995 -2014年青藏高原观测降水分布模态特征为自东南向西北递减并且降水集中在夏季, 大部分模式可以模拟出降水分布和季节性趋势但几乎都有高估降水的现象, 多模式平均降水高出观测102%; 总体上CMIP6最新模式对于青藏高原降水模拟能力较差, 模式相对于观测的平均相对偏差指数为102%, 说明大部分模式表现不理想, 定量分析所有模式后选出EC-Earth3-Veg-LR, MPI-ESM1-2-LR, EC-Earth3-Veg, MRI-ESM2-0为模拟较优模式, 可大致反映出青藏高原的降水特性; 气候模式在SSP1-2.6情景下青藏高原降水增长最慢, SSP5-8.5增长最快; 从辐射强迫较弱情景SSP1-2.6到较强情景SSP5-8.5, 近期(2021 -2040年)高原降水增幅在各情景下难发现较大差别, 但中期(2041 -2060年)和末期(2081 - 2100年)有明显增长, 说明碳排放强度对近期影响较小而对长期影响大; 未来降水增幅主要发生在念青唐古拉山以南地区, 从季节性来看夏季增幅最大, 其次是春季、 秋季, 增幅最小的是冬季, 因此应当注重青藏高原未来夏季和春季的降水变化, 做好应对措施。

本文引用格式

李博渊 , 胡芩 . 基于CMIP6模式评估结果对未来青藏高原降水多情景预估[J]. 高原气象, 2024 , 43(1) : 59 -72 . DOI: 10.7522/j.issn.1000-0534.2023.00029

Abstract

As a climate-sensitive region, precipitation over the Qinghai-Xizang (Tibetan) Plateau significantly impacts the water cycle and the climate of East Asia.Therefore, it is important to study its changes.Precipitation is an important variable in the global hydrological cycle and one of the major climate systems affected by climate change.To investigate the ability of the global climate models to simulate precipitation over the Qinghai-Xizang (Tibetan) Plateau and examine possible changes in future precipitation under the new model and scenarios, this paper uses the latest monthly precipitation data from the 31 climate models of the Coupled Model Intercomparison Project 6 (CMIP6) and the CN05.1 precipitation observation data set provided by the National Climate Center to evaluate the ability of the CMIP6 model to simulate precipitation over the Qinghai-Xizang (Tibetan) Plateau.Furthermore, better models are selected to project the future precipitation of the Qinghai-Xizang (Tibetan) Plateau under different Shared Socioeconomic Pathway (SSP) scenarios.The results show that the model distribution of observed precipitation over the Qinghai-Xizang (Tibetan) Plateau from 1995 to 2014 is characterized by a decrease from southeast to northwest and a summer precipitation concentration.Most of the models can simulate the precipitation distribution and seasonal trend, but almost all of them overestimate the precipitation phenomenon, and the average precipitation of multiple modes is 102% higher than that observed.In general, the latest model of CMIP6 has a poor ability to simulate precipitation over the Qinghai-Xizang (Tibetan) Plateau, and the average relative deviation index of the model from the observation is 102%, indicating that most of the models are not satisfactory, and EC-Earth3-Veg-LR, MPI-ESM1-2-LR, EC-Earth3-Veg, and MRI-ESM2-0 are selected as the better modes after quantitative analysis of all the models, which can roughly reflect the precipitation characteristics of the Qinghai-Xizang (Tibetan) Plateau.Climate models show the slowest increase of precipitation over the Qinghai-Xizang (Tibetan) Plateau under the SSP1-2.6 scenario and the fastest increase under SSP5-8.5.From SSP1-2.6 in the small radiative forcing scenario to SSP5-8.5 in the large scenario, the recent (from 2021 to 2040) precipitation increase on the plateau is difficult to find a large difference in each scenario, but there is a significant increase in the mid (from 2041 to 2060) and late (from 2081 to 2100) scenarios, indicating that carbon emission intensity has a small impact in the short term and a large impact in the long term.The future increase in precipitation mainly occurs in the area south of the Nianqing Tanggula Mountains, from a seasonal point of view, the summer increase is the largest, followed by spring and autumn, the smallest increase is in winter, so we should pay attention to the future summer and spring precipitation changes over the Qinghai-Xizang (Tibetan) Plateau and take coping measures.

参考文献

null
Chen X L Liu Y M Wu G X2017.Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau[J].Advances in Atmospheric Sciences34(12): 1447-1460.DOI: 10.1007/s00376-017-6326-9 .
null
Cui T Li C Tian F Q2021.Evaluation of temperature and precipitation simulations in CMIP6 models over the Tibetan Plateau[J].Earth and Space Science8(7): e2020EA001620. DOI: 10. 1029/2020EA001620 .
null
Duan Q Y Phillips T J2010.Bayesian estimation of local signal and noise in multimodel simulations of climate change[J].Journal of Geophysical Research115(D18): D18123.DOI: 10. 1029/2009JD013654 .
null
He C Wang Z Q Zhou T J, et al, 2019.Enhanced latent heating over the tibetan plateau as a key to the enhanced East Asian Summer Monsoon Circulation under a warming climate[J].Journal of Climate32(11): 3373-3388.DOI: 10.1175/JCLI-D-18-0427.1 .
null
Hui P H Tang J P Wang S Y, et al, 2018.Climate change projections over China using regional climate models forced by two CMIP5 global models.Part II: projections of future climate: projections of climate over China with Multi-RCM driven by CMIP5 GCM[J].International Journal of Climatology, 38: e78-e94.DOI: 10.1002/joc.5409 .
null
Immerzeel W W Van Beek LPH Bierkens MFP2010.Climate change will affect the Asian water towers[J].Science328(5984): 1382-1385.DOI: 10.1126/science.1183188 .
null
IPCC, 2021.Climate change 2021: the physical science basis: contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change[M].Cambridge: Cambridge University Press, In press.DOI: 10.1017/9781009157896 .
null
Jia K Ruan Y F Yang Y Z, et al, 2019.Assessing the performance of CMIP5 global climate models for simulating future precipitation change in the Tibetan Plateau[J].Water11(9): 1771.DOI: 10.3390/w11091771 .
null
Lun Y R Liu L Cheng L, et al, 2021.Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau[J].International Journal of Climatology41(7): 39944018.DOI: 10.1002/joc.7055 .
null
Qiu J2008.China: the third pole[J].Nature454(7203): 393-396.DOI: 10.1038/454393a .
null
Ramesh K V Goswami P2015.Assessing reliability of regional climate projections: the case of Indian monsoon[J].Scientific Reports4(1): 4071.DOI: 10.1038/srep04071 .
null
Rangwala I Sinsky E Miller J R2013.Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models[J].Environmental Research Letters8(2): 024040.DOI: 10.1088/1748-9326/8/2/024040 .
null
Su F G Duan X L Chen D L, et al, 2013.Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J].Journal of Climate26(10): 3187-3208.DOI: 10.1175/JCLI-D-12-00321.1 .
null
Su F Zhang L Ou T, et al, 2016.Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau[J].Global and Planetary Change, 136: 82-95.DOI: 10.1016/j.gloplacha.2015.10.012 .
null
Xue X Guo J Han B S, et al, 2009.The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau[J].Geomorphology108(3/4): 182-190.DOI: 10.1016/j.geomorph.2009.01.004 .
null
Yang K Wu H Qin J, et al, 2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J].Global and Planetary Change, 112: 79-91.DOI: 10. 1016/j.gloplacha.2013.12.001 .
null
Zhu Y Y Yang S N2020.Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5[J].Advances in Climate Change Research, 11: 239-251.DOI: 10.1016/j.accre.2020.08.001 .
null
陈炜, 姜大膀, 王晓欣, 2021.CMIP6 模式对青藏高原气候的模拟能力评估与预估研究[J].高原气象40(6): 1455-1469.DOI: 10.7522/j.issn.1000-0534.2021.zk003.Chen W
null
Jiang D B Wang X X2021.Evaluation and projection of CMIP6 models for climate over the Qinghai-Xizang (Tibetan) Plateau[J].Plateau Meteorology40(6): 1455-1469.DOI: 10.7522/j.issn. 1000-0534.2021.zk003 .
null
冯蕾, 周天军, 2017.20 km高分辨率全球模式对青藏高原夏季降水变化的预估[J].高原气象36(3): 587-595.DOI: 10.7522/j.issn.1000-0534.2016.00045.Feng L
null
Zhou T J2017.Projection of summer precipitation change over the Qinghai-Tibetan Plateau with a 20 km high-resolution Global Climate Model[J].Plateau Meteorology36(3): 587-595.DOI: 10.7522/j.issn. 1000-0534.2016.00045 .
null
胡芩, 姜大膀, 范广洲, 2014.CMIP5 全球气候模式对青藏高原地区气候模拟能力评估[J].大气科学38(5): 924-938.DOI: 10.3878/j.issn.1006-9895.2013.13197.Hu Q
null
Jiang D B Fan G Z2014.Evaluation of CMIP5 Models over the Qinghai-Tibetan Plateau[J].Chinese Journal of Atmospheric Sciences38(5): 924-938.DOI: 10.3878/j.issn.1006-9895.2013.13197 .
null
姜彤, 王艳君, 苏布达, 等, 2020.全球气候变化中的人类活动视角: 社会经济情景的演变[J].南京信息工程大学学报(自然科学版)12(1): 68-80.DOI: 10.13878/j.cnki.jnuist.2020.01. 009.Jiang T
null
Wang Y J Su B D, et al, 2020.Perspectives of human activities in global climate change: evolution of socio-economic scenarios[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition)12(1): 68-80.DOI: 10.13878/j.cnki.jnuist.2020.01.009 .
null
李斐斐, 刘朝晖, 2022.CMIP5 模式对青藏高原中东部夏季降水双极型模拟能力的评估[J].海洋气象学报42(2): 22-32.DOI: 10.19513/j.cnki.issn.2096-3599.2022.02.003.Li F F
null
Liu C H2022.Evaluation of simulation performance of CMIP5 models for the dipole oscillation of summer precipitation over the central and eastern Tibetan Plateau[J].Journal of Marine Meteorology42(2): 22-32.DOI: 10.19513/j.cnki.issn.2096-3599.2022. 02.003 .
null
卢珊, 胡泽勇, 王百朋, 等, 2020.近 56 年中国极端降水事件的时空变化格局[J].高原气象39(4): 683-693.DOI: 10.7522/j.issn.1000-0534.2019.00058.Lu S
null
Hu Z Y Wang B P, et al, 2020.Spatio-temporal patterns of extreme precipitation events over China in recent 56 Years[J].Plateau Meteorology39(4): 683-693.DOI: 10.7522/j.issn.1000-0534.2019.00058 .
null
王玉琦, 鲍艳, 南素兰, 2019.青藏高原未来气候变化的热动力成因分析[J].高原气象38(1): 29-41.DOI: 10.7522/j.issn. 1000-0534.2018.00066.Wang Y Q
null
Bao Y Nan S L2019.Dynamic and thermodynamic effects on climate changes over the Qinghai-Tibetan Plateau in response to global warming[J].Plateau Meteorology38(1): 29-41.DOI: 10.7522/j.issn.1000-0534. 2018.00066 .
null
伍清, 蒋兴文, 谢洁, 2017.CMIP5模式对西南地区气温的模拟能力评估[J].高原气象36(2): 358-370.DOI: 10.7522/j.issn.1000-0534.2016.00046.Wu Q
null
Jiang X W Xie J2017.Evaluation of surface air temperature in southwestern China simulated by the CMIP5 models[J].Plateau Meteorology36(2): 358-370.DOI: 10.7522/j.issn.1000-0534.2016.00046 .
null
许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.Xu J W
null
Gao Y H Peng B F, et al, 2020.Change characteristics of precipitation and its cause during 1979-2016 over the Qinghai-Tibetan Plateau[J].Plateau Meteorology39(2): 234-244.DOI: 10.7522/j.issn. 1000-0534.2019.00029 .
null
杨绚, 李栋梁, 汤绪, 2014.基于CMIP5多模式集合资料的中国气温和降水预估及概率分析[J].中国沙漠34(3): 795-804.DOI: 10.7522/j.issn.1000-694X.2013.00381.Yang X
null
Li D L Tang X2014.Probability assessment of temperature and precipitation over China by CMIP5 multi-model ensemble[J].Journal of Desert Research34(3): 795-804.DOI: 10.7522/j.issn. 1000-694X.2013.00381 .
null
杨耀先, 胡泽勇, 路富全, 等, 2020.青藏高原近 60 年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117.Yang Y X
null
Hu Z Y Lu F Q, et al, 2020.Progress of recent 60 years' climate change and its environmental impacts on the Qinghai-Xizang Plateau[J].Plateau Meteorology41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117 .
null
张镱锂, 李炳元, 郑度, 2014.《论青藏高原范围与面积》一文数据的发表——青藏高原范围界线与面积地理信息系数数据[J].地理学报69(): 65-68.DOI: 10.11821/dlxb2014S012.Zhang Y L
null
Li B Y Zheng D2014.The publication of the data of the paper "On the Extent and Area of the Tibetan Plateau" — the data of the limit of the extent and the geographic information coefficient of the area of the Tibetan Plateau[J].Acta Geographica Sinica69(): 65-68.DOI: 10.11821/dlxb2014S012 .
null
赵宗慈, 罗勇, 黄建斌, 2020.未来20年全球继续变暖吗?[J].气候变化研究进展16(5): 652-656.DOI: 10.12006/ j.issn.1673-1719.2020.040.Zhao Z C
null
Luo Y Huang J B2020.Will global warming continue in the next 20 years?[J].Climate Change Research16(5): 652-656.DOI: 10.12006/ j.issn. 1673-1719.2020.040 .
文章导航

/