基于CMIP6模式评估结果对未来青藏高原降水多情景预估
收稿日期: 2022-12-02
修回日期: 2023-03-28
网络出版日期: 2024-01-11
基金资助
第二次青藏高原综合科学考察研究项目(2019QZKK0102); 四川省自然科学基金项目(2022NSFSC0230)
Multi-Scenario Projection of Future Precipitation over the Qinghai-Xizang (Tibetan) Plateau Based on CMIP6 Model Assessment Results
Received date: 2022-12-02
Revised date: 2023-03-28
Online published: 2024-01-11
青藏高原作为气候敏感区域, 其降水对东亚水文循环和气候有着巨大的影响, 因此对于其变化的研究十分重要。降水是全球水文循环的重要变量, 是受气候变化影响的重要气候系统之一, 为了探究全球气候模式对青藏高原降水的模拟能力以及探究在新模式、 新情景下未来降水可能变化, 本文使用耦合模式比较计划第6阶段(CMIP6)最新的31个气候模式逐月降水资料, 以及国家气候中心所提供的CN05.1降水观测数据集, 评估CMIP6模式对青藏高原降水的模拟能力, 并择优选择模式在不同共享社会经济路径情景下(Shared Socioeconomic Pathway, SSP)进行高原未来降水预估。结果表明: 1995 -2014年青藏高原观测降水分布模态特征为自东南向西北递减并且降水集中在夏季, 大部分模式可以模拟出降水分布和季节性趋势但几乎都有高估降水的现象, 多模式平均降水高出观测102%; 总体上CMIP6最新模式对于青藏高原降水模拟能力较差, 模式相对于观测的平均相对偏差指数为102%, 说明大部分模式表现不理想, 定量分析所有模式后选出EC-Earth3-Veg-LR, MPI-ESM1-2-LR, EC-Earth3-Veg, MRI-ESM2-0为模拟较优模式, 可大致反映出青藏高原的降水特性; 气候模式在SSP1-2.6情景下青藏高原降水增长最慢, SSP5-8.5增长最快; 从辐射强迫较弱情景SSP1-2.6到较强情景SSP5-8.5, 近期(2021 -2040年)高原降水增幅在各情景下难发现较大差别, 但中期(2041 -2060年)和末期(2081 - 2100年)有明显增长, 说明碳排放强度对近期影响较小而对长期影响大; 未来降水增幅主要发生在念青唐古拉山以南地区, 从季节性来看夏季增幅最大, 其次是春季、 秋季, 增幅最小的是冬季, 因此应当注重青藏高原未来夏季和春季的降水变化, 做好应对措施。
李博渊 , 胡芩 . 基于CMIP6模式评估结果对未来青藏高原降水多情景预估[J]. 高原气象, 2024 , 43(1) : 59 -72 . DOI: 10.7522/j.issn.1000-0534.2023.00029
As a climate-sensitive region, precipitation over the Qinghai-Xizang (Tibetan) Plateau significantly impacts the water cycle and the climate of East Asia.Therefore, it is important to study its changes.Precipitation is an important variable in the global hydrological cycle and one of the major climate systems affected by climate change.To investigate the ability of the global climate models to simulate precipitation over the Qinghai-Xizang (Tibetan) Plateau and examine possible changes in future precipitation under the new model and scenarios, this paper uses the latest monthly precipitation data from the 31 climate models of the Coupled Model Intercomparison Project 6 (CMIP6) and the CN05.1 precipitation observation data set provided by the National Climate Center to evaluate the ability of the CMIP6 model to simulate precipitation over the Qinghai-Xizang (Tibetan) Plateau.Furthermore, better models are selected to project the future precipitation of the Qinghai-Xizang (Tibetan) Plateau under different Shared Socioeconomic Pathway (SSP) scenarios.The results show that the model distribution of observed precipitation over the Qinghai-Xizang (Tibetan) Plateau from 1995 to 2014 is characterized by a decrease from southeast to northwest and a summer precipitation concentration.Most of the models can simulate the precipitation distribution and seasonal trend, but almost all of them overestimate the precipitation phenomenon, and the average precipitation of multiple modes is 102% higher than that observed.In general, the latest model of CMIP6 has a poor ability to simulate precipitation over the Qinghai-Xizang (Tibetan) Plateau, and the average relative deviation index of the model from the observation is 102%, indicating that most of the models are not satisfactory, and EC-Earth3-Veg-LR, MPI-ESM1-2-LR, EC-Earth3-Veg, and MRI-ESM2-0 are selected as the better modes after quantitative analysis of all the models, which can roughly reflect the precipitation characteristics of the Qinghai-Xizang (Tibetan) Plateau.Climate models show the slowest increase of precipitation over the Qinghai-Xizang (Tibetan) Plateau under the SSP1-2.6 scenario and the fastest increase under SSP5-8.5.From SSP1-2.6 in the small radiative forcing scenario to SSP5-8.5 in the large scenario, the recent (from 2021 to 2040) precipitation increase on the plateau is difficult to find a large difference in each scenario, but there is a significant increase in the mid (from 2041 to 2060) and late (from 2081 to 2100) scenarios, indicating that carbon emission intensity has a small impact in the short term and a large impact in the long term.The future increase in precipitation mainly occurs in the area south of the Nianqing Tanggula Mountains, from a seasonal point of view, the summer increase is the largest, followed by spring and autumn, the smallest increase is in winter, so we should pay attention to the future summer and spring precipitation changes over the Qinghai-Xizang (Tibetan) Plateau and take coping measures.
null | |
null | |
null | |
null | |
null | |
null | |
null | IPCC, 2021.Climate change 2021: the physical science basis: contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change[M].Cambridge: Cambridge University Press, In press.DOI: 10.1017/9781009157896 . |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈炜, 姜大膀, 王晓欣, 2021.CMIP6 模式对青藏高原气候的模拟能力评估与预估研究[J].高原气象, 40(6): 1455-1469.DOI: 10.7522/j.issn.1000-0534.2021.zk003.Chen W , |
null | |
null | 冯蕾, 周天军, 2017.20 km高分辨率全球模式对青藏高原夏季降水变化的预估[J].高原气象, 36(3): 587-595.DOI: 10.7522/j.issn.1000-0534.2016.00045.Feng L , |
null | |
null | 胡芩, 姜大膀, 范广洲, 2014.CMIP5 全球气候模式对青藏高原地区气候模拟能力评估[J].大气科学, 38(5): 924-938.DOI: 10.3878/j.issn.1006-9895.2013.13197.Hu Q , |
null | |
null | 姜彤, 王艳君, 苏布达, 等, 2020.全球气候变化中的人类活动视角: 社会经济情景的演变[J].南京信息工程大学学报(自然科学版), 12(1): 68-80.DOI: 10.13878/j.cnki.jnuist.2020.01. 009.Jiang T , |
null | |
null | 李斐斐, 刘朝晖, 2022.CMIP5 模式对青藏高原中东部夏季降水双极型模拟能力的评估[J].海洋气象学报, 42(2): 22-32.DOI: 10.19513/j.cnki.issn.2096-3599.2022.02.003.Li F F , |
null | |
null | 卢珊, 胡泽勇, 王百朋, 等, 2020.近 56 年中国极端降水事件的时空变化格局[J].高原气象, 39(4): 683-693.DOI: 10.7522/j.issn.1000-0534.2019.00058.Lu S , |
null | |
null | 王玉琦, 鲍艳, 南素兰, 2019.青藏高原未来气候变化的热动力成因分析[J].高原气象, 38(1): 29-41.DOI: 10.7522/j.issn. 1000-0534.2018.00066.Wang Y Q , |
null | |
null | 伍清, 蒋兴文, 谢洁, 2017.CMIP5模式对西南地区气温的模拟能力评估[J].高原气象, 36(2): 358-370.DOI: 10.7522/j.issn.1000-0534.2016.00046.Wu Q , |
null | |
null | 许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.Xu J W , |
null | |
null | 杨绚, 李栋梁, 汤绪, 2014.基于CMIP5多模式集合资料的中国气温和降水预估及概率分析[J].中国沙漠, 34(3): 795-804.DOI: 10.7522/j.issn.1000-694X.2013.00381.Yang X , |
null | |
null | 杨耀先, 胡泽勇, 路富全, 等, 2020.青藏高原近 60 年来气候变化及其环境影响研究进展[J].高原气象, 41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117.Yang Y X , |
null | |
null | 张镱锂, 李炳元, 郑度, 2014.《论青藏高原范围与面积》一文数据的发表——青藏高原范围界线与面积地理信息系数数据[J].地理学报, 69(): 65-68.DOI: 10.11821/dlxb2014S012.Zhang Y L , |
null | |
null | 赵宗慈, 罗勇, 黄建斌, 2020.未来20年全球继续变暖吗?[J].气候变化研究进展, 16(5): 652-656.DOI: 10.12006/ j.issn.1673-1719.2020.040.Zhao Z C , |
null |
/
〈 |
|
〉 |