论文

西藏墨脱复杂地形X波段相控阵偏振天气雷达降水观测和反演方法研究

  • 陈浩然 ,
  • 耿飞 ,
  • 刘黎平 ,
  • 杨华
展开
  • 中国气象科学研究院灾害天气国家重点实验室,北京 100081

陈浩然(1998 -), 男, 四川隆昌人, 硕士研究生, 主要从事雷达气象学研究. E-mail:

收稿日期: 2022-10-24

  修回日期: 2023-05-06

  网络出版日期: 2024-01-11

基金资助

第二次青藏高原综合科学考察研究项目(2019QZKK0105)

Study on Precipitation Observation and Retrieval Methods of X-band Phased Array Polarization Weather Radar in Motuo, Xizang

  • Haoran CHEN ,
  • Fei GENG ,
  • Liping LIU ,
  • Hua YANG
Expand
  • State Key Laboratory of Server Weather,Chinese Academy of Meteorological Sciences,Beijing 100081,China

Received date: 2022-10-24

  Revised date: 2023-05-06

  Online published: 2024-01-11

摘要

墨脱的降水变化与印度洋、 孟加拉湾的水汽向内陆的输送、 夏季风及我国东部雨带的推进过程联系紧密。它的独特地形与西南气流的相互作用在当地形成了年均降水超过2000 mm的降水带。但墨脱的复杂地形与有限的电力交通条件造成了降水观测的困难。2019年, 第二次青藏高原综合科学考察研究任务专题项目在墨脱设置了一部X波段双偏振相控阵雷达, 实现了对墨脱云降水的连续观测, 对当地生态环境和云水资源研究以及高原东南水汽通道特征研究等具有重要的意义。文中使用墨脱X波段双偏振相控阵雷达2020年6 -8月的观测数据, 使用统计手段筛选降水回波片段, 整合后构造得到符合墨脱复杂地形的混合仰角; 利用2019年墨脱雨滴谱数据计算雷达参量、 拟合得到适合墨脱地区降水特点的X波段天气雷达定量降水估测(QPE)公式。在此基础上选取2020年7 -8月三次累积降水量、 平均雨强、 持续时间各不相同的降水过程, 使用线性规划方案计算Φ DP(差分传播相移)、 最小二乘拟合计算K DP(差分传播相移率)、 “ZPHI”降水廓线算法订正Z H(反射率因子); 以Z HK DP为阈值, 使用RZ H)与RK DP)分段估测降水, 与单独使用RZ H)和RK DP)的估测结果进行对比; 并基于降水估测结果和雷达参量的水平分布探讨降水分布与地形的关系。本文经过质量控制的Z HK DP数据质量有明显改善; 使用统计方法构造的混合仰角有效回波面积大于使用SRTM1 v3.0地形数据构造的混合仰角, 三次降水的典型时刻参量与过程累积降水量和平均Z HZ DR能初步反映降水变化与地形的关系; 本文的降水估测公式和分段估测降水方法整体结果表现良好, 各评估参数均具有较好的表现; 结果表明: (1)墨脱雷达周边地形变化剧烈, 根据现有地形数据构造的混合仰角在降水估测中表现不如本文统计筛选雷达观测数据得到的混合仰角数据; (2)本文采用的数据质控方法、 定量降水估测公式与分段估测方法(PEM)在降水反演中表现良好, 与单一的RZ H)、 RK DP)方法相比, 得到的结果在CC和RMSE无明显变化的情况下, 估测误差明显减小; (3)墨脱降水的发生发展或与西南气流被河谷偏北方山坡抬升有关, 较大雨强、 较小粒子直径的云位于地势平缓的谷底。

本文引用格式

陈浩然 , 耿飞 , 刘黎平 , 杨华 . 西藏墨脱复杂地形X波段相控阵偏振天气雷达降水观测和反演方法研究[J]. 高原气象, 2024 , 43(1) : 99 -113 . DOI: 10.7522/j.issn.1000-0534.2023.00039

Abstract

The variation in precipitation in Motuo is closely associated with the transport of water vapor from the India Ocean and the Bay of Bengal to inland China, the Asia summer monsoon, and the progression of the rain band in eastern China.A rain band with an average annual precipitation of more than 2000 mm has been formed due to the interaction of the distinctive topography of Motuo and the southwest air flow.However, it has been challenging to observe precipitation in Motuo due to the peculiar topography, insufficient electricity, and inadequate traffic conditions.An X-band dual-polarization phased array radar (XPAR) is installed during the Second Qinghai-Xizang Plateau Scientific Expedition and Research Program.The advanced dual-polarization phased array radar is used to continuously observe the precipitation in Motuo and is of great significance to the research of the local ecological environment and cloud water resources, and the impact on downstream.Based on XPAR data collected for the period from June to August 2020, we selected the radial precipitation echoes using a statistical method, and after integrating the precipitation echoes, we created the hybrid elevation angle that tallied with the topography of Motuo.Using DSD data from Motuo in 2019, we calculated radar parameters and obtained the localized QPE (Quantitative Precipitation Estimation) formulas of X-band weather radar.We selected three processes of precipitation with different cumulative precipitation, duration, and average rain rate from July to August 2020, calculated Φ DP (Differential Propagation Phase Shift) using the linear programming method, K DP (Differential Propagation Phase Shift Rate) using the ordinary least square method, and corrected Z H (Reflectivity Factor) using the “ZPHI” rain profiling algorithm.Using Z H and K DP as thresholds, we estimated precipitation piecewise utilizing RZ H) and RK DP), and contrasted results with the QPE results from the RZ H) and RK DP) methods, respectively.And explored the relationship between precipitation distribution and the topography of Motuo based on the QPE results.The quality of Z H and K DP had been significantly improved.The hybrid elevation angle constructed using a statistical method had a larger echo area than the hybrid elevation angle constructed using STRM1 v3.0 data.The PPI (Plane Position Indicator) diagrams of three precipitation (radar parameters at typical times, and average radar parameters) processes can show the relationship between the variation in precipitation and the topography of Motuo.The QPE formulas and Piecewise Estimation Method (PEM) used in the research functioned well, and each evaluation parameter performed well.The following conclusions are drawn: (1) The hybrid elevation angle constructed using the statistical method outperformed the hybrid elevation angle constructed using topography data in QPE, due to the drastic variation of the topography around the XPAR in Motuo; (2) The data quality control method, the QPE formulas, and the PEM utilized in the research all performed well at precipitation retrieval.The estimation error of the QPE results was significantly reduced, without causing significant changes in CC and RMSE; (3) Precipitation in Motuo may occur and grow as a result of the lifting of the southwest air flow by northern slopes of the valley.Clouds with higher rain rates and smaller drops are found near the level bottom of the valley.

参考文献

null
Barber P Yeh C1975.Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies[J].Applied Optics14(12): 2864.DOI: 10.1364/AO.14.002864 .
null
Bringi V N Chandeasekar V Balakrishnan N, et al, 1990.An examination of propagation effects in rainfall on radar measurements at microwave frequencies[J].Journal of Atmospheric and Oceanic Technology7(6): 829-840.DOI: 10.1175/1520-0426(1990)007<0829: aeopei>2.0.co; 2 .
null
Fulton R A Breidenbach J P Seo D J, et al, 1998.The WSR-88D rainfall algorithm[J].Weather and Forecasting13(2): 377-395.DOI: 10.1175/1520-0434(1998)013<0377: twra>2.0.co; 2 .
null
Giangrande S E McGraw R Lei L2013.Application of linear programming to polarimetric radar differential phase processing[J].Journal of Atmospheric and Oceanic Technology30(8): 1716-1729.DOI: 10.1175/jtech-d-12-00147.1 .
null
Gorgucci E Scarchilli G Chandrasekar V1999.Specific differential phase estimation in the presence of nonuniform rainfall medium along the path[J].Journal of Atmospheric and Oceanic Technology16(11): 1690-1697.DOI: 10.1175/1520-0426(1999)016<1690: sdpeit>2.0.co; 2 .
null
Grazioli J Schneebeli M Berne A2013.Accuracy of phase-based algorithms for the estimation of the specific differential phase shift using simulated polarimetric weather radar data[J].IEEE Geoscience and Remote Sensing Letters11(4): 763-767.DOI: 10.1109/lgrs.2013.2278620 .
null
Jaffrain J Berne A2011.Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers[J].Journal of Hydrometeorology12(3): 352-370.DOI: 10.1175/2010jhm1244.1 .
null
Kim D S Maki M Lee D I2010.Retrieval of three-dimensional raindrop size distribution using X-band polarimetric radar data[J].Journal of Atmospheric and Oceanic Technology27(8): 1265-1285.DOI: 10.1175/2010JTECHA1407.1 .
null
Li J J Chen J H Lu C S, et al, 2020.Impacts of TIPEX‐III rawinsondes on the dynamics and thermodynamics over the eastern Tibetan Plateau in the boreal summer[J].Journal of Geophysical Research: Atmospheres125(13).DOI: 10.1029/2020jd032635 .
null
Marshall J S Palmer W M1948.The distribution of raindrops with size[J].Journal of Meteorology5(4): 165-166.DOI: 10.1175/1520-0469(1948)005<0165: tdorws>2.0.co; 2 .
null
Park S G Maki M, Iwanami, et al, 2005.Correction of radar reflectivity and differential reflectivity for rain attenuation at X band.Part Ⅱ: Evaluation and Application[J].Journal of Atmospheric and Oceanic Technology22(11): 1633-1655.DOI: 10.1175/JTECH1804.1 .
null
Qi Y C Zhang J Zhang P F, et al, 2013.VPR correction of bright band effects in radar QPEs using polarimetric radar observations[J].Journal of Geophysical Research: Atmospheres118(9): 3627-3633.DOI: 10.1002/jgrd.50364 .
null
Seliga T A Bringi V N1976.Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation[J].Journal of Applied Meteorology and Climatology15(1): 69-76.DOI: 10.1175/1520-0450(1976)015<0069: puordr>2.0.co; 2 .
null
Savitzky A Golay M J E1964.Smoothing and differentiation of data by simplified least squares procedures[J].Analytical Chemistry36(8): 1627-1639.DOI: 10.1021/ac60214a047 .
null
Testud J Le Bouar E Obligis E, et al, 2000.The rain profiling algorithm applied to polarimetric weather radar[J].Journal of Atmospheric and Oceanic Technology17(3): 332-356.DOI: 10. 1175/1520-0426(2000)017<0332: trpaat>2.0.co; 2 .
null
Thompson E J Rutledge S A Dolan B, et al, 2018.Dual-polarization radar rainfall estimation over tropical oceans[J].Journal of Applied Meteorology and Climatology57(3): 755-775.DOI: 10.1175/jamc-d-17-0160.1 .
null
Thurai M Mishra K V Bringi V N2017.Initial results of a new composite-weighted algorithm for dual-polarized X-band rainfall estimation[J].Journal of Hydrometeorology18(4): 1081-1100.DOI: 10.1175/jhm-d-16-0196.1 .
null
Tokay A Petersen W A Gatlin P, et al, 2013.Comparison of raindrop size distribution measurements by collocated disdrometers[J].Journal of Atmospheric and Oceanic Technology30(8): 1672-1690.DOI: 10.1175/jtech-d-12-00163.1 .
null
Wang C Wu C Liu L P, et al, 2020.Integrated correction algorithm for X band dual-polarization radar reflectivity based on CINRAD/SA radar[J].Atmosphere11(1): 119.DOI: 10.3390/atmos11010119 .
null
Wang Y T Chandrasekar V2009.Algorithm for estimation of the specific differential phase[J].Journal of Atmospheric and Oceanic Technology26(12): 2565-2578.DOI: 10.1175/2009jtecha1358.1 .
null
Wu Y H Liu L P2017.Statistical characteristics of raindrop size distribution in the Tibetan Plateau and southern China[J].Advances in Atmospheric Sciences34(6): 727-736.DOI: 10.1007/s00376-016-5235-7 .
null
Yanai M Li C F Song Z S1992.Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J].Journal of the Meteorological Society of Japan70(1): 419-434.DOI: 10.2151/jmsj1965.70.1b_319 .
null
Xu X D Lu C G Shi X H, et al, 2008.World water tower: an atmospheric perspective[J].Geophysical Research Letters35(20): 525-530.DOI: 10.1029/2008gl035867 .
null
Yu R C Wang B Zhou T J2004.Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau[J].Journal of Climate17(13): 2702-2713.DOI: 10.1175/1520-0442(2004)017<2702: ceotdc>2.0.co; 2 .
null
Zrnic D S Kimpel J F Forsyth D E, et al, 2007.Agile-beam phased array radar for weather observations[J].Bulletin of the American Meteorological Society88(11): 1753-1766.DOI: 10.1175/bams-88-11-1753 .
null
曹杨, 陈洪滨, 苏德斌, 2018.C波段双线偏振天气雷达零度层亮带识别和订正[J].应用气象学报29(1): 84-96.DOI: 10. 11898/1001-7313.20180108.Cao Y
null
Chen H B Su D B2018.Identification and correction of the bright band using a C-band dual polarization weather radar[J].Journal of Applied Meteorological Science29(1): 84-96.DOI: 10.11898/1001-7313.20180108 .
null
陈萍, 李波, 2018.藏东南水汽输送特征分析及其影响[J].南方农业12(9): 124-125.DOI: 10.19415/j.cnki.1673-890x.2018.09.066.Chen P
null
Li B2018.Analysis of water vapor transport characteristics in southeast Tibet and its influence[J].South China Agriculture12(9): 124-125.DOI: 10.19415/j.cnki. 1673-890x.2018.09.066 .
null
陈奕辰, 刘锦丽, 段树, 等, 2012.X波段双极化雷达在北京夏季降水估测中的应用[J].气候与环境研究17(3): 292-302.DOI: 10.3878/j.issn.1006-9585.2012.10115.Chen Y C
null
Liu J L Duan S, et al, 2012.Application of X-band dual polarization radar in precipitation estimation in summer of Beijing[J].Climatic and Environmental Research17(3): 292-302.DOI: 10.3878/j.issn.1006-9585.2012.10115 .
null
傅云飞, 李宏图, 自勇, 2007.TRMM 卫星探测青藏高原谷地的降水云结构个例分析[J].高原气象26(1): 98-106.
null
Fu Y F Li H T Zi Y2007.Case study of precipitation cloud structure viewed by TRMM satellite in a valley of the Tibetan Plateau[J].Plateau Meteorology26(1): 98-106.
null
高登义, 邹捍, 王维, 1985.雅鲁藏布江水汽通道对降水的影响[J].山地研究3(4): 239-249.
null
Gao D Y Zou H Wang W1985.Influence of water vapor pass along the Yarlung Zangbo river on precipitation [J].Mountain Research3(4): 239-249.
null
江吉喜, 范梅珠, 2002.夏季青藏高原上的对流云和中尺度对流系统[J].大气科学26(2): 263-170.DOI: 10.3878/j.issn.1006-9895.2002.02.12.Jiang J X
null
Fan M Z2002.Convective clouds and mesoscale convective systems over the Tibetan Plateau in summer[J].Chinese Journal of Atmospheric Sciences26(2): 263-170.DOI: 10.3878/j.issn.1006-9895.2002.02.12 .
null
刘俊, 黄兴友, 何雨岑, 等, 2015.X波段相控阵气象雷达回波数据的对比分析[J].高原气象34(4): 1167-1176.DOI: 10.7522/ j.issn.1000-0534.2014.00043.Liu J
null
Huang X Y He Y Q, et al, 2015.Comparative analysis of X-band phased array antenna weather radar measurements[J].Plateau Meteorology34(4): 1167-1176.DOI: 10.7522/ j.issn.1000-0534.2014.00043 .
null
刘黎平, 钱永甫, 王致君, 等, 1996.双线偏振雷达测雨效果的对比分析[J].大气科学20(5): 615-619.DOI: 10.3878/j.issn. 1006-9895.1996.05.13.Liu L P
null
Qian Y F Wang Z J, et al, 1996.Comparative study on dual linear polarization radar measuring rainfall rate[J].Chinese Journal of Atmospheric Sciences20(5): 615-619.DOI: 10.3878/j.issn.1006-9895.1996.05.13 .
null
雷林平, 2014.基于Savitzky-Golay算法的曲线平滑去噪[J].电脑信息与技术22(5): 30-31.DOI: 10.19414/j.cnki.1005-1228.2014.05.011.Lei L P , 2014.Curve smooth denoising based on Savitzky-Golay Algorithm[J].Computer and Information Technology, 22(5): 30-31.DOI: 10.19414/j.cnki.1005-1228.2014.05.011 .
null
刘黎平, 吴林林, 吴翀, 等, 2014.X波段相控阵天气雷达对流过程观测外场试验及初步结果分析[J].大气科学38(6): 1079-1094.DOI: 10.3878/j.issn.1006-9895.1402.13253.Liu L P
null
Wu L L Wu C, et al, 2014.Field experiment on convective precipitation by X-band phased-array radar and preliminary results[J].Chinese Journal of Atmospheric Sciences38(6): 1079-1094.DOI: 10.3878/j.issn.1006-9895.1402.13253 .
null
马建立, 陈明轩, 李思腾, 等, 2019.线性规划在X波段双线偏振多普勒天气雷达差分传播相移质量控制中的应用[J].气象学报77(3): 561-528.DOI: 10.11676/qxxb2019.023.Ma J L
null
Chen M X Li S T, et al, 2019.Application of linear programming on quality control of differential propagation phase shift data for X-band dual linear polarimetric Doppler weather radar[J].Acta Meteorologica Sinica77(3): 561-528.DOI: 10. 11676/qxxb2019.023 .
null
施小英, 施晓晖, 2008.夏季青藏高原东南部水汽收支气候特征及其影响[J].应用气象学报19(1): 41-46.DOI: 10.3969/j.issn.1001-7313.2008.01.006.Shi X Y
null
Shi X H2008.Climatological characteristics of summertime moisture budget over the southeast part of Tibetan Plateau with their impacts[J].Journal of Applied Meteorological Science19(1): 41-46.DOI: 10.3969/j.issn.1001-7313.2008.01.006 .
null
王红艳, 刘黎平, 2015.新一代天气雷达降水估算的区域覆盖能力评估[J].高原气象34(6): 1772-1784.DOI: 10.7522/j.issn.1000-0534.2014.00122.Wang H Y
null
Liu L P2015.Assessment of CINRAD regional coverage for quantitative precipitation estimation[J].Plateau Meteorology34(6): 1772-1784.DOI: 10.7522/j.issn.1000-0534.2014.00122 .
null
王灵芝, 李茂善, 吕钊, 等, 2022.藏东南峡谷地区不同下垫面地表通量变化特征及其与降水的关系[J].高原气象41(1): 177-189.DOI: 10.7522/j.issn.1000-0534.2020.00107.Wang L Z
null
Li M S Lu Z, et al, 2022.Variation characteristics of surface fluxes on different underlying surfaces and their relationship with precipitation in the canyon area of Southeast Tibet[J].Plateau Meteorology41(1): 177-189.DOI: 10.7522/j.issn.1000-0534.2020.00107 .
null
王改利, 周任然, 扎西索郎, 等, 2021.青藏高原墨脱地区云降水综合观测及初步统计特征分析[J].气象学报79(5): 841-852.DOI: 10.11676/qxxb2021.054.Wang G L
null
Zhou R R Zha X S L, et al, 2021.Comprehensive observations and preliminary statistical analysis of clouds and precipitation characteristics in Motuo of Tibet Plateau[J].Acta Meteorologica Sinica79(5): 841-852.DOI: 10.11676/qxxb2021.054 .
null
叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和 对流层大气的热量平衡[J].气象学报28(2): 108-121.DOI: 10.11676/qxxb1957.010.Ye D Z
null
Lou S W, Zhu, B Z, 1957.The wind structure and heat balance in the lower troposphere over Tibetan plateau and its surrounding[J].Acta Meteorologica Sinica28(2): 108-121.DOI: 10.11676/qxxb1957.010 .
null
肖艳姣, 刘黎平, 2007.三维雷达反射率资料用于层状云和对流云的识别研究[J].大气科学31(4): 645-654.DOI: 10.3878/j.issn.1006-9895.2007.04.09.Xiao Y J
null
Liu L P2007.Identification of stratiform and convective cloud using 3D radar reflectivity data[J].Chinese Journal of Atmospheric Sciences31(4): 645-654.DOI: 10.3878/j.issn.1006-9895.2007.04.09 .
null
徐祥德, 董李丽, 赵阳, 等, 2019.青藏高原“亚洲水塔”效应和大气 水分循环特征[J].科学通报64(27): 2830-2841.DOI: 10.1360/TB-2019-0203.Xu X D
null
Dong L L Zhao Y, et al, 2019.Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation[J].Chinese Science Bulletin64(27): 2830-2841.DOI: 10. 1360/TB-2019-0203 .
null
徐祥德, 陶诗言, 王继志, 等, 2002.青藏高原-季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J].气象学报60(3): 257-266+385.DOI: 10.11676/qxxb2002.032.Xu X D
null
Tao S Y Wang J Z, et al, 2002.the relationship between water vapor transport features of Tibetan Plateau-Monsoon "large triangle" affecting region and drought-flood abnormality of China[J].Acta Meteorologica Sinica60(3): 257-266+385.DOI: 10.11676/qxxb2002.032 .
null
徐祥德, 赵天良, Lu C G, 等, 2014.青藏高原大气水分循环特征[J].气象学报72(6): 1079-1095.DOI: 10.11676/qxxb2014. 091.Xu X D
null
Zhao T L Lu C G, et al, 2014.Characteristics of the water cycle in the atmosphere over the Tibetan Plateau[J].Acta Meteorologica Sinica72(6): 1079-1095.DOI: 10.11676/qxxb2014.091 .
null
张羽, 田聪聪, 傅佩玲, 等, 2020.广州 X波段双偏振相控阵天气雷达观测试验进展[J].气象科技进展10(6): 80-85.DOI: 10.3969/j.issn.2095-1973.2020.06.014.Zhang Y
null
Tian C C Fu P L, et al, 2020.Progress of observation experiment for X-band dual polarization phased array radars in Guangzhou[J].Advances in Meteorological Science and Technology10(6): 80-85.DOI: 10.3969/j.issn.2095-1973.2020.06.014 .
null
张蔚然, 吴翀, 刘黎平, 等, 2021.双偏振相控阵雷达与业务雷达的定量对比及观测精度研究[J].高原气象40(2): 424-435.DOI: 10.7522/j.issn.1000-0534.2020.00056.Zhang W R
null
Wu Z Liu L P, et al, 2021.Research on quantitative comparison and observation precision of dual polarization phased array radar and operational radar[J].Plateau Meteorology40(2): 424-435.DOI: 10.7522/j.issn.1000-0534.2020.00056 .
null
张强, 文军, 武月月, 等, 2021.雅鲁藏布大峡谷地区近地面-大气间水热交换特征分析[J].高原气象40(1): 153-166.DOI: 10.7522/j.issn.1000-0534.2021.00113.Zhang Q
null
Wen J Wu Y Y, et al, 2021.Characteristics analysis of the land-atmospheric water & heat exchanges over the Yarlung Zangbo Grand Canyon Region[J].Plateau Meteorology40(1): 153-166.DOI: 10. 7522/j.issn.1000-0534.2021.00113 .
null
张勇, 吴胜刚, 张亚萍, 等, 2019.基于SWAN雷达拼图产品在暴雨 过程中的对流云识别及效果检验[J].气象45(2): 180-190.DOI: 10.7519/j.issn.1000-0526.2019.02.004.Zhang Y
null
Wu S G Zhang Y P, et al, 2019.Identification and effect verification of convective cloud precipitation in rainstorm processes based on SWAN mosaic products[J].Meteorological Monthly45(2): 180-190.DOI: 10.7519/j.issn.1000-0526.2019.02. 004 .
null
卓嘎, 徐祥德, 陈联寿, 2002.青藏高原夏季降水的水汽分布特征[J].气象科学22(1): 1-8.DOI: 10.3969/j.issn.1009-0827.2002.01.001.Zhuo G
null
Xu X D Chen L S2002.Water feature of summer precipitation on Tibetan plateau[J].Journal of the Meteorological Sciences22(1): 1-8.DOI: 10.3969/j.issn.1009-0827.2002.01.001 .
文章导航

/