基于CloudSat-CALIPSO数据的黄土高原地区云特征分析
收稿日期: 2023-08-07
修回日期: 2023-12-07
网络出版日期: 2023-12-07
基金资助
国家自然科学基金项目(42122004); 西安科技大学优秀青年科技基金项目
Analysis of Cloud Characteristics in the Loess Plateau Based on CloudSat-CALIPSO Satellite Data
Received date: 2023-08-07
Revised date: 2023-12-07
Online published: 2023-12-07
云是地气系统的重要组成部分, 为深入分析黄土高原地区云特征, 利用2007 -2016年搭载首部云探测雷达云卫星(CloudSat)与云-气溶胶激光雷达和红外探测者观测卫星(The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation, CALIPSO)资料, 选取黄土高原半湿润、 半干旱、 干旱和寒旱四个区域, 对云的宏、 微观物理特征进行了分析。结果表明: (1)黄土高原各区域云出现频率年均值达到了55%以上, 其中, 春、 夏季云出现频率最高, 秋冬两季相对较低; 半湿润区云出现频率高于其他区域, 但其他三个区域云出现频率最高的月份均早于半湿润区。(2)各区域中单层云出现频率最高, 占到总云量的60%以上, 多层云中主要是双层云, 约占总云量的25%。云层高度在不同区域表现为春、 夏季节大于秋、 冬季节, 半湿润区的云层高度在四季均大于其他区域。各区域云几何厚度季节变化不显著, 均在1~4 km之间, 主要以薄云为主, 且78.13%的云几何厚度不超过2 km。(3)各区域的云液态水含量年均值均达到了220.5 mg·m-3, 约为冰水含量年均值的6.5倍, 主要分布在8.5 km以下的高度层。随着高度的减小, 液态水含量逐渐增多, 其中半湿润区云液态水含量大于其他区域。各区域全年冰水含量占比较小, 主要分布在16.5 km以下的高度层。(4)液滴有效半径在各区域的值主要集中在12~16 μm, 在半干旱区的春季出现了最大值, 约为24 μm; 冰粒子有效半径最大值出现在半湿润区的夏季。液滴数浓度在各区域的值集中在60~80 cm-3, 均小于冰粒子数浓度平均值, 其峰值出现在各区域的夏季, 冰粒子数浓度的峰值出现在半湿润和半干旱区的春季。该研究结果有助于深入认识黄土高原云的特征, 为区域气候模式对黄土高原地区云特征的模拟提供一定的参考依据。
关键词: 黄土高原; CloudSat-CALIPSO; 云垂直结构; 宏微观物理特征
尤丹丹 , 张淑花 , 金存银 , 王倩茹 . 基于CloudSat-CALIPSO数据的黄土高原地区云特征分析[J]. 高原气象, 2024 , 43(3) : 583 -594 . DOI: 10.7522/j.issn.1000-0534.2023.00096
Clouds play an important role in the Earth-atmosphere system.To deeply analyze the cloud characteristics in the Loess Plateau region (LP), the macro and micro physical characteristics of clouds were analyzed by using the CloudSat-CALIPSO data from 2007 to 2016 in four regions of the Loess Plateau, namely, semi-humid, semi-arid, arid, and cold arid.The findings indicate that: (1) In the LP, the annual average frequency of clouds exceeds 55%, with the highest frequency in spring and summer, and relatively lower in autumn and winter.The frequency of clouds in semi-humid region is higher than that in other regions.However, the months with the highest frequency of cloud occurrence in the other three regions are earlier than those in the semi-humid region.(2) The frequency of single-layer clouds is the highest in all regions, accounting for over 60% of the total cloud amount, with double-layer clouds being the main type among multi-layer clouds, accounting for about 25% of the total cloud amount.The seasonal variation of cloud height in each region shows that it is greater in spring and summer than in autumn and winter, and that it is greater in semi-humid region than in other regions in all seasons.The seasonal variation of cloud geometric thickness is not significant in all regions, which is between 1 km and 4 km, with mainly thin clouds, and 78.13% of the cloud geometric thickness is less than 2 km.(3) The annual average value of cloud liquid water content in all regions reaches more than 220.5 mg·m-3, about 6.5 times of the annual average ice water content.It is mainly distributed in the altitude below 8.5 km, and the liquid water content gradually increases as the altitude decreases, in which the cloud liquid water content in the semi-humid region is larger than that in other regions.The ice water content in each region is small throughout the year, mainly distributed in the altitude layer below 16.5 km.(4) The values of the effective radius of liquid droplets in each region are mainly concentrated in the range of 12~16 μm, with a maximum of about 24 μm in the spring in the semi-arid region; the maximum value of the effective radius of ice particles occurs in the summer in the semi-humid region.The values of droplet number concentration in all regions were concentrated at 60~80 cm3, which were smaller than the mean value of ice particle number concentration, with peaks occurring in the summer in all regions, and the peak of ice particle number concentration occurring in the spring in the semi-humid and semi-arid regions.The results of this study can help to understand the cloud characteristics of the Loess Plateau and provide a reference basis for the simulation of cloud characteristics in the Loess Plateau by regional climate models.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 符传博, 丹利, 冯锦明, 等, 2019.1960~2012年中国地区总云量时空变化及其与气温和水汽的关系[J].大气科学, 43(1): 87-98.DOI: 10.3878/j.issn.1006-9895.1801.17235.Fu C B , |
null | |
null | 范梦奇, 王文彩, 韩永清, 等, 2019.基于CloudSat卫星资料的青岛地区云特征研究[J].海洋气象学报, 39(1): 76-85.DOI: 10.19513/j.cnki.issn 2096-3599.2019.01.008.Fan M Q , |
null | |
null | 光莹, 邓军英, 陈勇航, 等, 2017.层状云微物理属性垂直分布的季节变化-以新疆地区为例[J].干旱区地理, 40(4): 754-761.DOI: 10.13826/j.cnki.cn65-1103/x.2017.04.006.Guang Y , |
null | |
null | 胡树贞, 曹晓钟, 陶法, 等, 2020.船载毫米波云雷达观测西太平洋云宏观特征对比分析[J].气象, 46(6): 745-752.DOI: 10.7519/j.issn.1000-0526.2020.06.002.Hu S Z , |
null | |
null | 刘健, 杨晓峰, 崔鹏, 2016.NOAA 卫星 2007 年总云量数据精度评估[J].高原气象, 35(4): 1027-1038.DOI: 10.7522/j.issn.1000-0534.2015.00029.Liu J , |
null | |
null | 刘建军, 陈葆德, 2017.基于CloudSat卫星资料的青藏高原云系发生频率及其结构[J].高原气象, 36(3): 632-642.DOI: 10.7522/j.issn.1000-0534.2017.00028.Liu J J , |
null | |
null | 卢珊, 胡泽勇, 付春伟, 等, 2022.黄土高原夏季极端降水及其成因分析[J].高原气象, 41(1): 241-254.DOI: 10.7522/j.issn.1000-0534.2021.00027.Lu S , |
null | |
null | 吕玉环, 雷恒池, 魏蕾, 2021.中国北方典型地区不同类型云微物理特征分析[J].气象科技, 49(3): 455-463. |
null | DOI: 10.19517/j.1671-6345.20200218.L ü Y H, |
null | 彭杰, 张华, 沈新勇, 2013.东亚地区云垂直结构的CloudSat卫星观测研究[J].大气科学, 37(1): 91-100.DOI: 10.3878/j.issn.1006-9895.2012.11188.Peng J , |
null | |
null | 汪会, 罗亚丽, 张人禾, 2011.用CloudSat/CALIPSO资料分析亚洲季风区和青藏高原地区云的季节变化特征[J].大气科学, 35(6): 1117-1131.DOI: 10.3878/j.issn.1006-9895.2011.06.11. Wang H , |
null | |
null | 位晶, 段克勤, 2018.基于卫星资料的秦岭南北云系及其垂直结构特征[J].高原气象, 37(3): 777-785.DOI: 10.7522/j.issn.1000-0534.2018.00057.Wei J , |
null | |
null | 位晶, 段克勤, 辛蕊, 2020.青藏高原地区云出现概率及其辐射强迫变化特征[J].冰川冻土, 42(2): 368-377.DOI: 10.7522/j.issn.1000-0240.2019.0065.Wei J , |
null | |
null | 王瑾, 张镭, 杜韬, 等, 2022.探空和毫米波云雷达探测云高一致性的时空匹配原则研究[J].高原气象, 41(5): 1348-1366.DOI: 10.7522/j.issn.1000-0534.2021.00047.Wang J , |
null | |
null | 王帅辉, 韩志刚, 姚志刚, 等, 2011.基于CloudSat资料的中国及周边地区各类云的宏观特征分析[J].气象学报, 69(5): 883-899.DOI: 10.11676/qxxb2011.077.Wang S H , |
null | |
null | 王胜杰, 何文英, 陈洪滨, 等, 2010.利用CloudSat资料分析青藏高原, 高原南坡及南亚季风区云高度的统计特征量[J].高原气象, 29(1): 1-9. |
null | |
null | 肖蓓, 崔步礼, 李东昇, 等, 2017.黄土高原不同气候区降水时空变化特征[J].中国水土保持科学, 15(1): 51-61.DOI: 10.16843/ j.sswc.2017.01.007.Xiao B , |
null | |
null | 辛悦, 毕力格, 包山虎, 等, 2023.基于CloudSat-CALIPSO数据的大兴安岭地区云宏微观物理量的垂直结构特征分析[J].气象, 49(4): 427-438.DOI: 10.7519/j.issn.1000-0526.2022.080601.Xin Y , |
null | |
null | 宇路, 2020.星载测云雷达与激光雷达探测的东亚夏季卷云和深对流云及其辐射特征研究[D].安徽: 中国科学技术大学, 1-119.DOI: 10.27517/d.cnki.gzkju.2020.000305.Yu L , 2020.The characteristics of cirrus and deep convective clouds associated radiation in summer East Asia based on observation of CloudSat and CALIPSO[D].Anhui: University of Science and Technology of China, 1-119.DOI: 10.27517/d.cnki.gzkju.2020.000305 . |
null | 叶培龙, 王天河, 尚可政, 等, 2014.基于卫星资料的中国西部地区云垂直结构分析[J].高原气象, 33(4): 977-987.DOI: 10.7522/j.issn.1000-0534.2013.00158.Ye P L , |
null | |
null | 张德杰, 师春香, 张涛, 等, 2022.多种资料的总云量产品在中国区域的对比分析[J].高原气象, 41(3): 803-813.DOI: 10.7522/j.issn.1000-0534.2021.00019.Zhang D J , |
null | |
null | 张华, 杨冰韵, 彭杰, 等, 2015.东亚地区云微物理量分布特征的CloudSat卫星观测研究[J].大气科学, 39(2): 235-248.DOI: 10.3878/j.issn.1006-9895.1408.13313.Zhang H , |
null | |
null | 周镜石, 王东海, 2016.秦巴山区云垂直结构分析[J].成都信息工程大学学报, 31(5): 523-530.DOI: 10.16836/j.cnki.jcuit.2016.05.015.Zhou J S , |
null | |
null | 张敬书, 荆林海, 王思远, 2023. 近 20年青藏高原云分布特征及云参数时空变化分析[J].高原气象, 42(5): 1107-1118.DOI: 10.7522/j.issn.1000-0534.2022.00081.Zhang J S , |
null | |
null | 郑倩, 孙杭媛, 潘欣, 等, 2022.基于CloudSat资料对中国低纬度陆地区域卷云物理特征的研究[J].气象科学, 42(3): 390-341.DOI: 10.12306 /2021jms.0023.Zheng Q , |
null | |
null | 周天, 黄忠伟, 黄建平, 等, 2013.黄土高原地区云垂直结构的激光雷达遥感研究[J].干旱气象, 31(2): 246-253.DOI: 10.11755 /j.issn.1006-7639(2013)-02-0246.Zhou T , |
null | |
null | 张晓, 段克勤, 刘焕才, 2015.夏季念青唐古拉峰地区云结构分析[J].水科学进展, 26(2): 196-200.DOI: 10.14042/j.cnki.32.1309.2015.02.006.Zhang X , |
null |
/
〈 |
|
〉 |