卫星微波湿度计资料同化对雅鲁藏布江大峡谷暴雨模拟的影响
收稿日期: 2023-06-25
修回日期: 2023-12-08
网络出版日期: 2023-12-08
基金资助
第二次青藏高原综合科学考察研究项目(2019QZKK0105); 四川省科技计划项目(2022YFS0536)
Impact of Satellite Microwave Hygrometer Data Assimilation on the Yarlung Zangbo Grand Canyon Area Heavy Rain Simulation
Received date: 2023-06-25
Revised date: 2023-12-08
Online published: 2023-12-08
利用数值预报系统Weather Research Forecast Model(WRF)与三维变分同化系统Data Assimilation(WRF-DA), 通过控制方案(Con)、 NOAA-19方案(MHS)和FY-3C方案(MWHS-2), 研究了FY-3C搭载的Micro-Wave Humidity Sounder 2(MWHS-2)和NOAA-19(National Oceanic and Atmospheric Administration-19)的Microwave Humidity Sound‐er(MHS)微波湿度计资料同化了雅鲁藏布江大峡谷暴雨模拟预报的影响。结果表明: 利用WRF-3DVAR(Three Dimensional Variation)同化MHS与MWHS-2微波辐射资料的模拟, 改善了降水的落区位置, 但MWHS-2试验降水落区更偏北; 同化使得水汽场的落区明显改善, 但相较于落区的改善, 其对强降水量级的改善作用较小。同化增强了700 hPa南北风分量, 加大了研究区域水汽的输送强度, 有利于水汽聚集。同化也改善了温度场, 如700~400 hPa层形成具有不稳定性的垂直温度场结构, 有利于降水产生和发展。总之, MHS试验的模拟结果优于MWHS-2, 主要体现在风场、 温和湿度场。此外, MWHS-2试验的24 h预报均方根误差变化较稳定, 说明该数据更有利于中后期的模拟。
符梓霖 , 王磊 , 李谢辉 , 梁沛乐 . 卫星微波湿度计资料同化对雅鲁藏布江大峡谷暴雨模拟的影响[J]. 高原气象, 2024 , 43(4) : 883 -894 . DOI: 10.7522/j.issn.1000-0534.2023.00099
This study uses the Weather Research Forecast Model (WRF) numerical forecast system and the Three-Dimensional Variational Data Assimilation (WRF-DA) system to investigate the impact of assimilating data from the Micro-Wave Humidity Sounder 2 (MWHS-2) onboard FY-3C and the Microwave Humidity Sounder (MHS) from NOAA-19 (National Oceanic and Atmospheric Administration-19) on the simulation and prediction of heavy rainfall events in the Yarlung Zangbo Grand Canyon.Three assimilation schemes are compared: the control (Con) scheme, the NOAA-19 scheme (MHS) and the FY-3C scheme (MWHS-2).The results indicate that assimilation of MHS and MWHS-2 microwave radiance data using WRF-3DVAR (Three-Dimensional Variation) improves the simulation performance compared to the Con experiment.It improves the accuracy of the precipitation location, although the MWHS-2 experiment shows a northern bias in the precipitation area.Satellite data assimilation significantly improves the moisture field, but its effect on heavy rain intensity is less pronounced than its effect on precipitation area improvement.Data assimilation enhances the 700 hPa meridional wind component, leading to increased moisture transport within the study area.With respect to temperature, the assimilation of satellite microwave moisture data has a moderately positive effect, which forming an unstable vertical temperature structure in the 700~400 hPa layer, conducive to the generation and development of precipitation.Overall, the simulation results of the MHS experiment outperform those of MWHS-2, especially in the wind field, temperature and humidity fields.In addition, the root mean square error changes in the 24-hour forecast of the MWHS-2 experiment are relatively stable, indicating that MWHS-2 satellite data are more advantageous for medium to long-term simulation studies.
Key words: WRF; MWHS-2; MHS; assimilation; rainstorm; Yarlung Zangbo River
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈旭, 王磊, 李谢辉, 等, 2023.MWHS-2和MHS资料同化对三江源地区暴雨模拟影响的对比研究[J].高原气象, 42(6): 1386-1401.DOI: 10.7522/j.issn.1000-0534.2023.00024.Chen X , |
null | |
null | 范娇, 2019.FY-3C微波湿度计资料在西南涡降水预报中的同化研究[D].成都: 成都信息工程大学.Fan J, 2019.Assimilation of FY-3C microwave hygrometer data in precipitation forecasting of the southwest vortex[D].Chengdu: Chengdu University of Information Technology. |
null | 董佩明, 刘健文, 刘桂青, 等, 2014.ATMS卫星资料的同化应用及与AMSUA/MHS的比较研究[J].热带气象学报(4): 623-632.Dong P M, Liu J W, Liu G Q, et al, 2014.Study on the aassimilation of ATMS satellite data and comparison with AMSUA/MHS[J].Journal of Tropical meteorology(4): 623-632. |
null | 胡博亭, 柳江, 王文玲, 等, 2019.基于洪旱灾害的雅鲁藏布江流域水资源脆弱性时空差异分析[J].长江流域资源与环境, 28(5): 1092-1101. |
null | |
null | 黄海波, 陈春艳, 朱雯娜, 2011.WRF模式不同云微物理参数化方案及水平分辨率对降水预报效果的影响[J].气象科技, 39 (5): 529-536.DOI: 10.19517/j.1671-6345.2011.05.001.Huang Ha B , |
null | |
null | 蒋璐西, 陈科艺, 陈林琳, 2019.MWHS/FY-3资料同化在四川盆地暴雨预报中的应用研究[J].高原山地气象研究, 39(4): 9-15. |
null | |
null | 刘东海, 黄静, 刘娟, 等, 2023.国内外典型中尺度数值预报模式参数化方案的综述与展望[J].地球科学进展, 38(4): 349-362. |
null | |
null | 刘江涛, 徐宗学, 赵焕, 等, 2018.1973-2016年雅鲁藏布江流域极端降水事件时空变化特征[J].山地学报, 36(5): 750-764. |
null | |
null | 刘硕松, 董佩明, 韩威, 等, 2012.RTTOV和CRTM对“罗莎”台风卫星微波观测的模拟研究与比较[J].气象学报, 70(3): 585-597.DOI: 10.11676/qxxb2012.048.Liu S S , |
null | |
null | 马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象, 40(6): 1241-1262.DOI: 10.7522/j.issn.1000-0534.2021.zk006.Ma Y M , |
null | |
null | 毛璐, 谢彦辉, 刘瑞霞, 等, 2022.FY-3C微波湿度计辐射率资料同对RMAPS-ST系统的降水预报影响[J.高原气象, 41(4): 896-908.DOI: 10.7522/j.issn.1000-0534.2021.00025.Mao L , |
null | |
null | 毛智, 朱志鹏, 张如翼, 等, 2022.不同云微物理方案对青藏高原一次强降水的模拟影响分析[J].热带气象学报, 38(1): 81-90.DOI: 10.16032/j.issn.1004-4965.2022.008.Mao Z , |
null | |
null | 沈程锋, 李国平, 2022.基于GPM资料的四川盆地及周边地区夏季地形降水垂直结构研究[J].高原气象, 41(6): 1532-1543.DOI: 10.7522/j.issn.1000-0534.2021.0116.Shen C F , |
null | |
null | 魏栋, 刘丽伟, 田文寿, 等, 2021.基于卫星资料的西北地区高原涡强降水分析[J].高原气象, 40(4): 829-839.DOI: 10.7522/j.issn.1000-0534.2021.000021.Wei D , |
null | |
null | 吴遥, 李跃清, 蒋兴文, 等, 2017.WRF模拟青藏高原东南部极端旱涝年降水的参数敏感性研究[J].高原气象, 36(3): 619-631.DOI: 10.7522/j.issn.1000-0534.2016.00057.Wu Y , |
null | |
null | 杨浩, 崔春光, 王晓芳, 等, 2019.气候变暖背景下雅鲁藏布江流域降水变化研究进展[J].暴雨灾害, 38(6): 565-575. |
null | |
null | 徐祥德, 陶诗言, 王继志, 等, 2002.青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J].气象学报, 60(3): 257-266.DOI: 10.11676/qxxb2002.032.Xu X D , |
null | |
null | 周校立, 官莉, 2023.RTTOV中模拟亮温对垂直插值方案的敏感性研究[J].科学技术创新(4): 212-216. |
null | |
null | 张强, 文军, 武月月, 等, 2022.雅鲁藏布大峡谷地区近地面-大气间水热交换特征分析[J].高原气象, 41(1): 153-166.DOI: 10.7522/j.issn.1000-0534.2021.00113.Zhang Q , |
null |
/
〈 |
|
〉 |