论文

卫星微波湿度计资料同化对雅鲁藏布江大峡谷暴雨模拟的影响

  • 符梓霖 ,
  • 王磊 ,
  • 李谢辉 ,
  • 梁沛乐
展开
  • 成都信息工程大学大气科学学院,四川 成都 610225

符梓霖(1998 -), 男, 广东人, 硕士研究生, 主要从事卫星资料同化与数值模拟研究. E-mail:

收稿日期: 2023-06-25

  修回日期: 2023-12-08

  网络出版日期: 2023-12-08

基金资助

第二次青藏高原综合科学考察研究项目(2019QZKK0105); 四川省科技计划项目(2022YFS0536)

Impact of Satellite Microwave Hygrometer Data Assimilation on the Yarlung Zangbo Grand Canyon Area Heavy Rain Simulation

  • Zilin FU ,
  • Lei WANG ,
  • Xiehui LI ,
  • Peile LIANG
Expand
  • College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China

Received date: 2023-06-25

  Revised date: 2023-12-08

  Online published: 2023-12-08

摘要

利用数值预报系统Weather Research Forecast Model(WRF)与三维变分同化系统Data Assimilation(WRF-DA), 通过控制方案(Con)、 NOAA-19方案(MHS)和FY-3C方案(MWHS-2), 研究了FY-3C搭载的Micro-Wave Humidity Sounder 2(MWHS-2)和NOAA-19(National Oceanic and Atmospheric Administration-19)的Microwave Humidity Sound‐er(MHS)微波湿度计资料同化了雅鲁藏布江大峡谷暴雨模拟预报的影响。结果表明: 利用WRF-3DVAR(Three Dimensional Variation)同化MHS与MWHS-2微波辐射资料的模拟, 改善了降水的落区位置, 但MWHS-2试验降水落区更偏北; 同化使得水汽场的落区明显改善, 但相较于落区的改善, 其对强降水量级的改善作用较小。同化增强了700 hPa南北风分量, 加大了研究区域水汽的输送强度, 有利于水汽聚集。同化也改善了温度场, 如700~400 hPa层形成具有不稳定性的垂直温度场结构, 有利于降水产生和发展。总之, MHS试验的模拟结果优于MWHS-2, 主要体现在风场、 温和湿度场。此外, MWHS-2试验的24 h预报均方根误差变化较稳定, 说明该数据更有利于中后期的模拟。

本文引用格式

符梓霖 , 王磊 , 李谢辉 , 梁沛乐 . 卫星微波湿度计资料同化对雅鲁藏布江大峡谷暴雨模拟的影响[J]. 高原气象, 2024 , 43(4) : 883 -894 . DOI: 10.7522/j.issn.1000-0534.2023.00099

Abstract

This study uses the Weather Research Forecast Model (WRF) numerical forecast system and the Three-Dimensional Variational Data Assimilation (WRF-DA) system to investigate the impact of assimilating data from the Micro-Wave Humidity Sounder 2 (MWHS-2) onboard FY-3C and the Microwave Humidity Sounder (MHS) from NOAA-19 (National Oceanic and Atmospheric Administration-19) on the simulation and prediction of heavy rainfall events in the Yarlung Zangbo Grand Canyon.Three assimilation schemes are compared: the control (Con) scheme, the NOAA-19 scheme (MHS) and the FY-3C scheme (MWHS-2).The results indicate that assimilation of MHS and MWHS-2 microwave radiance data using WRF-3DVAR (Three-Dimensional Variation) improves the simulation performance compared to the Con experiment.It improves the accuracy of the precipitation location, although the MWHS-2 experiment shows a northern bias in the precipitation area.Satellite data assimilation significantly improves the moisture field, but its effect on heavy rain intensity is less pronounced than its effect on precipitation area improvement.Data assimilation enhances the 700 hPa meridional wind component, leading to increased moisture transport within the study area.With respect to temperature, the assimilation of satellite microwave moisture data has a moderately positive effect, which forming an unstable vertical temperature structure in the 700~400 hPa layer, conducive to the generation and development of precipitation.Overall, the simulation results of the MHS experiment outperform those of MWHS-2, especially in the wind field, temperature and humidity fields.In addition, the root mean square error changes in the 24-hour forecast of the MWHS-2 experiment are relatively stable, indicating that MWHS-2 satellite data are more advantageous for medium to long-term simulation studies.

参考文献

null
Banks R F Tiana-Alsina J Baldasano J M, et al, 2016.Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign[J].Atmospheric Research, 176: 185-201.DOI: 10.1016/j.atmosres.2016.02.024 .
null
Boos W R Kuang Z2010.Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J].Nature463(7278): 218-222.DOI: 10.1038/nature08707 .
null
Chen K Y English S Bormann N, et al, 2015.Assessment of FY-3A and FY-3B MWHS observations[J].Weather and Forecasting30(5): 1280-1290.DOI: 10.1175/WAF-D-15-0025.1 .
null
Dee D P Uppala S2009.Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis[J].Quarterly Journal of the Royal Meteorological Society: A journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography135(644): 1830-1841.DOI: 10.1002/qj.493 .
null
Dudhia J1989.Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model[J].Atmospheric Sciences46(20): 3077-3107.DOI: 10.1175/1520-0469(1989)046<3077: NSOCOD>2.0.CO; 2 .
null
Gómez-Navarro J Raible C Dierer S2015.Sensitivity of the WRF model to PBL parametrisations and nesting techniques: evaluation of wind storms over complex terrain[J].Geoscientific Model Development8(10): 3349-3363.DOI: 10.5194/gmd-8-3349-2015 .
null
Hong S Y Dudhia J Chen S H2004.A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J].Monthly Weather Review.132(1): 103-120.DOI: 10.1175/1520-0493(2004)132<0103: ARATIM>2.0.CO; 2 .
null
Hong S Y Lim J O J2006.The WRF single-moment 6-class microphysics scheme (WSM6)[J].Korean Meteorological Society, 42: 129-151.
null
Lawrence H Carminati F Bell W, et al, 2017.An Evaluation of FY-3C MWRI and Assessment of the Long-Term Quality of FY-3C MWHS-2 at ECMWF and the Met Office[M].European Centre for Medium-Range Weather Forecasts Reading, UK.
null
Liu J Zhang W Nie N2018.Spatial downscaling of TRMM precipitation data using an optimal subset regression model with NDVI and terrain factors in the Yarlung Zangbo River Basin, China[J].Advances in Meteorology (1): 1-13.DOI: 10.1155/2018/3491960 .
null
Liu Q Xue Y Li C2013.Sensor-based clear and cloud radiance calculations in the community radiative transfer model[J].Applied Optics52(20): 4981-4990.DOI: 10.1364/ao.52.004981 .
null
Ma Y Tang G Long D, et al, 2016.Similarity and error intercomparison of the GPM and its predecessor-TRMM multi-satellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau[J].Remote Sensing8(7): 569.DOI: 10.3390/rs8070569 .
null
Mlawer E J Steven J, Taubman, et al, 1997.Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J].Geophysical Research: Atmospheres102(14): 16663-16682.DOI: 10.1029/97JD00237 .
null
Monin A S Obukhov A M1954.Basic laws of turbulent mixing in the surface layer of the atmosphere[J].Contrib Geophys Inst Acad Sci USSR, 151: 163-187.
null
Newman K M Schwartz C S Liu Z, et al, 2015.Evaluating forecast impact of assimilating microwave humidity sounder (MHS) radiances with a regional ensemble Kalman filter data assimilation system[J].Weather and Forecasting30(4): 964-983.DOI: 10.1175/WAF-D-14-00091.1 .
null
Pailleux J Kelly G1985.Use of satellite data in the ECMWF analysis system[C].ECMWF Workshop High Resolut.Anal, 15-26.DOI: 10.1175/WAF-D-14-00091.1 .
null
Schwartz C S Liu Z Chen Y, et al, 2012.Impact of assimilating microwave radiances with a limited-area ensemble data assimilation system on forecasts of Typhoon Morakot[J].Weather and Forecasting27(2): 424-437.DOI: 10.1175/WAF-D-11-00033.1 .
null
Xu D Min J Shen F, et al, 2016.Assimilation of MWHS radiance data from the FY‐3B satellite with the WRF Hybrid‐3DVAR system for the forecasting of binary typhoons[J].Advances in Modeling Earth Systems8(2): 1014-1028.DOI: 10.1002/2016MS000674 .
null
Xu D Liu Z Huang X Y, et al, 2013.Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones[J].Meteorology and Atmospheric Physics, 122: 1-18.DOI: 10.1007/s00703-013-0276-2 .
null
Xu R Tian F Yang L, et al, 2017.Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Ti‐ betan Plateau based on a high-density rain gauge network[J].Geophysical Research: Atmospheres, 122(2): 910-924.DOI: 10.1002/2016JD025418 .
null
Zhang S Wang D Qin Z, et al, 2018.Assessment of the GPM and TRMM precipitation products using the rain gauge network over the Tibetan Plateau[J].Meteorological Research, 32: 324-336.DOI: 10.1007/s13351-018-7067-0 .
null
Zhang S Q Zupanski M Hou A Y, et al, 2013.Assimilation of precipitation-affected radiances in a cloud-resolving WRF ensemble data assimilation system[J].Monthly Weather Review141(2): 754-772.DOI: 10.1175/MWR-D-12-00055.1 .
null
陈旭, 王磊, 李谢辉, 等, 2023.MWHS-2和MHS资料同化对三江源地区暴雨模拟影响的对比研究[J].高原气象42(6): 1386-1401.DOI: 10.7522/j.issn.1000-0534.2023.00024.Chen X
null
Wang L Li X H, et al, 2023.A comparative study on the impact of MWHS-2 and MHS data assimilation on the simulation of rainstorm in the Three Rivers Source Area[J].Plateau Meteorology42(6): 1386-1401.DOI: 10.7522/j.issn.1000-0534.2023.00024 .
null
范娇, 2019.FY-3C微波湿度计资料在西南涡降水预报中的同化研究[D].成都: 成都信息工程大学.Fan J, 2019.Assimilation of FY-3C microwave hygrometer data in precipitation forecasting of the southwest vortex[D].Chengdu: Chengdu University of Information Technology.
null
董佩明, 刘健文, 刘桂青, 等, 2014.ATMS卫星资料的同化应用及与AMSUA/MHS的比较研究[J].热带气象学报(4): 623-632.Dong P M, Liu J W, Liu G Q, et al, 2014.Study on the aassimilation of ATMS satellite data and comparison with AMSUA/MHS[J].Journal of Tropical meteorology(4): 623-632.
null
胡博亭, 柳江, 王文玲, 等, 2019.基于洪旱灾害的雅鲁藏布江流域水资源脆弱性时空差异分析[J].长江流域资源与环境28(5): 1092-1101.
null
Hu B T Liu J Wang W L, et al, 2019.Temporal-spatial differences of water resources vulnerability in the Yarlung Zangbo River Basin based on the characteristics of flood and drought disasters[J].Resources and Environment in the Yangtze Basin28(5): 1092-1101.
null
黄海波, 陈春艳, 朱雯娜, 2011.WRF模式不同云微物理参数化方案及水平分辨率对降水预报效果的影响[J].气象科技39 (5): 529-536.DOI: 10.19517/j.1671-6345.2011.05.001.Huang Ha B
null
Chen C Y Zhu M N2011.Impacts of different cloud microphysical processes and horizontal resolutions of WRF Model on precipitation forecast effect[J].Meteorological Science and Technology39 (5): 529-536.DOI: 10.19517/j.1671-6345.2011.05.001 .
null
蒋璐西, 陈科艺, 陈林琳, 2019.MWHS/FY-3资料同化在四川盆地暴雨预报中的应用研究[J].高原山地气象研究39(4): 9-15.
null
Jiang L X Chen K Y Chen L L2019.The study of assimilating MWHS/FY-3 data in the rainstorm cases in Sichuan Basin[J].Plateau and Mountain Meteorology Research39(4): 9-15.
null
刘东海, 黄静, 刘娟, 等, 2023.国内外典型中尺度数值预报模式参数化方案的综述与展望[J].地球科学进展38(4): 349-362.
null
Liu D H Huang J Liu J, et al, 2023.Review and prospect of parameterization schemes of typical mesoscale numerical prediction models at home and abroad[J].Advances in Earth Science38(4): 349-362.
null
刘江涛, 徐宗学, 赵焕, 等, 2018.1973-2016年雅鲁藏布江流域极端降水事件时空变化特征[J].山地学报36(5): 750-764.
null
Liu J T Xu Z X Zhao H, et al, 2018.Spatiotemporal variation of extreme precipitation events in the Yarlung Zangbo River Basin from 1973 to 2016, China[J].Mountain Research36 (5): 750-764.
null
刘硕松, 董佩明, 韩威, 等, 2012.RTTOV和CRTM对“罗莎”台风卫星微波观测的模拟研究与比较[J].气象学报70(3): 585-597.DOI: 10.11676/qxxb2012.048.Liu S S
null
Dong P M Han W, et al, 2012.Simulative study of satellite microwave observations for Typhoon Luosha using RTTOV and CRTM and the comparison[J].Acta Meteorologica Sinica70(3): 585-597.DOI: 10.11676/qxxb2012.048 .
null
马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象40(6): 1241-1262.DOI: 10.7522/j.issn.1000-0534.2021.zk006.Ma Y M
null
Hu Z Y Wang B B, et al, 2021.The review of the observation experiments on land-atmosphere interaction progress on the Qinghai-Xizang (Tibetan) Plateau[J].Plateau Meteorology40(6): 1241-1262.DOI: 10.7522/j.issn.1000-0534.2021.zk006 .
null
毛璐, 谢彦辉, 刘瑞霞, 等, 2022.FY-3C微波湿度计辐射率资料同对RMAPS-ST系统的降水预报影响[J.高原气象41(4): 896-908.DOI: 10.7522/j.issn.1000-0534.2021.00025.Mao L
null
Xie Y H Liu R X, et al, 2022.Impact of assimilating radiances from the microwave sounder MWHS-2 onboard FY-3C on rain forecasts in RMAPS-ST[J].Plateau Meteorology41(4): 896-908.DOI: 10.7522/j.issn.1000-0534.2021.00025 .
null
毛智, 朱志鹏, 张如翼, 等, 2022.不同云微物理方案对青藏高原一次强降水的模拟影响分析[J].热带气象学报38(1): 81-90.DOI: 10.16032/j.issn.1004-4965.2022.008.Mao Z
null
Zhu Z P Zhang R Y, et al, 2022.The impact of different cloud microphysics parameterization schemes on the simulation of a heavy rainfall event over the Tibetan Plateau[J].Journal of Tropical Meteorology38(1): 81-90.DOI: 10.16032/j.issn.1004-4965.2022.008 .
null
沈程锋, 李国平, 2022.基于GPM资料的四川盆地及周边地区夏季地形降水垂直结构研究[J].高原气象41(6): 1532-1543.DOI: 10.7522/j.issn.1000-0534.2021.0116.Shen C F
null
Li G P2022.The vertical structure of orographic precipitation during warm season in the Sichuan Basin and its surrounding areas by using GPM dual-frequency spaceborne precipitation radar[J].Plateau Meteorology41(6): 1532-1543.DOI: 10.7522/j.issn.1000-0534.2021.0116 .
null
魏栋, 刘丽伟, 田文寿, 等, 2021.基于卫星资料的西北地区高原涡强降水分析[J].高原气象40(4): 829-839.DOI: 10.7522/j.issn.1000-0534.2021.000021.Wei D
null
Liu L W Tian W S, et al, 2021.Analysis of the heavy precipitation caused by Plateau Vortex in northwest China based on satellite data[J].Plateau Meteorology40(4): 829-839.DO: 10.7522/j.issn.1000-0534.2021.000021.
null
吴遥, 李跃清, 蒋兴文, 等, 2017.WRF模拟青藏高原东南部极端旱涝年降水的参数敏感性研究[J].高原气象36(3): 619-631.DOI: 10.7522/j.issn.1000-0534.2016.00057.Wu Y
null
Li Y Q Jiang X W, et al, 2017.Parameters sensitivity analysis on simulation of rainfall in drought-flood year on Qinghai-Tibetan Plateau by WRF Model[J].Plateau Meteorology36(3): 619-631.DOI: 10.7522/j.issn.1000-0534.2016.00057 .
null
杨浩, 崔春光, 王晓芳, 等, 2019.气候变暖背景下雅鲁藏布江流域降水变化研究进展[J].暴雨灾害38(6): 565-575.
null
Yang H Cui C G Wang X F, et al, 2019.Research progresses of precipitation variation over the Yarlung Zangbo River basin under global climate warming[J].Torrential Rain and Disasters38(6): 565-575.
null
徐祥德, 陶诗言, 王继志, 等, 2002.青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J].气象学报60(3): 257-266.DOI: 10.11676/qxxb2002.032.Xu X D
null
Tao S Y Wang J Z, et al, 2002.The relationship between water vapor transport features of Tibetan Plateau-monsoon "Large Triangle" affecting region and drought-flood abnormality of China[J].Acta Meteorologica Sinica60(3): 257-266.DOI: 10.11676/qxxb2002.032 .
null
周校立, 官莉, 2023.RTTOV中模拟亮温对垂直插值方案的敏感性研究[J].科学技术创新(4): 212-216.
null
Zhou X L Guan L2023.Sensitivity of simulated brightness temperature to vertical interpolation scheme in RTTOV[J].Scientific and Technological Innovation(4): 212-216.
null
张强, 文军, 武月月, 等, 2022.雅鲁藏布大峡谷地区近地面-大气间水热交换特征分析[J].高原气象41(1): 153-166.DOI: 10.7522/j.issn.1000-0534.2021.00113.Zhang Q
null
Wen J Wu Y Y, et al, 2022.Characteristics analysis of the Land-atmospheric water & heat exchanges over the Yarlung Zangbo grand canyon region[J].Plateau Meteorology41(1): 153-166.DOI: 10.7522/j.issn.1000-0534.2021.00113 .
文章导航

/