论文

青藏高原冬季降雪特征及相关环流分析

  • 申红艳 ,
  • 乔少博 ,
  • 封国林 ,
  • 龚志强 ,
  • 温婷婷 ,
  • 冯晓莉
展开
  • 1. 陕西省气象科学研究所,陕西 西安 710014
    2. 陕西省气象局秦岭和黄土高原生态环境气象重点实验室,陕西 西安 710014
    3. 中山大学大气科学学院,广东 珠海 519000
    4. 中国气象局,北京 100081
    5. 青海省气候中心,青海 西宁 810001

申红艳(1979 -), 女, 正高级工程师, 主要从事气候与气候变化研究. E-mail:

收稿日期: 2023-04-30

  修回日期: 2023-12-18

  网络出版日期: 2023-12-18

基金资助

国家自然科学基金项目(42065003); 陕西省科技厅自然科学基础研究计划项目(2023-JC-YB-252)

Snowfall Characteristics in Winter over Qinghai-XizangTibetanPlateau and Its Key Circulation

  • Hongyan SHEN ,
  • Shaobo QIAO ,
  • Guolin FENG ,
  • Zhiqiang GONG ,
  • Tingting WEN ,
  • Xiaoli FENG
Expand
  • 1. Meteorological Institute of Shaanxi Province,Xi’an 710016,Shaanxi,China
    2. Key Laboratory of Eco-Environment and Meteorology for the Qinling Mountains and Loess Plateau,Shaanxi Meteorological Bureau,Xi’an 710016,Shaanxi,China
    3. School of Atmospheric Sciences,Sun Yat-sen University,Zhuhai 519082,Guangdong,China
    4. China Meteorological Administration,Beijing 100081,China
    5. Qinghai Climate Center,Xining 810001,Qinghai,China

Received date: 2023-04-30

  Revised date: 2023-12-18

  Online published: 2023-12-18

摘要

利用1961 -2020年青藏高原降雪观测资料和大气再分析数据, 分析了高原冬季降雪特征及其关键环流系统。结果表明: 高原冬季降雪空间分布不均, 表现为西北少、 东南多, 同时降雪年际振荡和年代际变化特征明显, 1988年发生由偏少向偏多的转折。青藏高原冬季降雪一致偏多时, 中高纬呈现类似欧亚南部型(Southern Eurasian, SEA)遥相关的正位相特征, 即欧洲西南部、 阿拉伯海、 东北亚上空位势高度场为显著正异常, 中东地区、 青藏高原上空为显著负异常, 经分析发现, SEA正位相时中东急流增强, 高原南部上升运动明显, 高原东北部和西南侧出现水汽显著辐合区, 为青藏高原冬季降雪异常偏多提供有利条件。与此同时, 北大西洋涛动(North Atlantic Oscillation, NAO)正(负)位相时有利于青藏高原降雪偏多(少), NAO主要通过SEA型遥相关和中东急流等环流系统来调控高原冬季降雪。

本文引用格式

申红艳 , 乔少博 , 封国林 , 龚志强 , 温婷婷 , 冯晓莉 . 青藏高原冬季降雪特征及相关环流分析[J]. 高原气象, 2024 , 43(4) : 841 -854 . DOI: 10.7522/j.issn.1000-0534.2023.00102

Abstract

Based on the meteorological observational data over Qinghai-Xizang (Tibetan) Plateau and atmospheric reanalysis dataset during 1961 to 2020, the snowfall variation characteristics over the Qinghai-Xizang (Tibetan) Plateau and its related corresponding circulation system were analyzed in this paper.Main conclusions are drawn as following: the spatial distribution of snowfall shows a uniformity with less in the northwest and more in the southeast.The characteristics of interannual and interdecadal variability are very evident.The interannual variability of the snowfall over Qinghai-Xizang Plateau was strong.The first mode of Qinghai-Xizang (Tibetan) Plateau snowfall anomalies is regional uniformity.In terms of the key circulation systems that affect Qinghai-Xizang (Tibetan) Plateau snowfall, when the snowfall over Qinghai-Xizang (Tibetan) Tibetan Plateau is more, the upper troposphere corresponds to the positive phase of the southern Eurasian (SEA) teleconnection, characterized as positive anomalies over the southwestern Europe, the Arabian Sea, and the northeast Asia, and negative anomalies over the Middle East and the Qinghai-Xizang (Tibetan) Plateau, while the Middle East jet is stronger; the positive (negative) phase of North Atlantic Oscillation (NAO) is conducive to more (less) snowfall over Tibetan Plateau, via modulating the SEA teleconnection and key circulation systems such as the Middle East jet stream.

参考文献

null
Bamzai A S Shukla J1999.Relation between Eurasian snow cover, snow depth, and the Indian Summer Monsoon: an Observational study[J].Journal of Climate12(10): 3117-3132.DOI: 10.1175/1520-0442(1999)0122.0.CO; 2 .
null
Cuo L Zhang Y Wang Q, et al, 2013.Climate change on the northern Tibetan Plateau during 1957-2009: spatial patterns and possible mechanisms[J].Journal of Climate26(1): 85-109.DOI: 10.1175/JCLI-D-11-00738.1 .
null
Danco J F DeAngelis A M Raney B K, et al, 2016.Effects of a warming climate on daily snowfall events in the Northern Hemisphere[J].Journal of Climate29(17): 6295-6318.DOI: 10.1175/JCLI-D-15-0687.1 .
null
Ding Y H Wang Z Y Song Y F, et al, 2008.Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming[J].Journal of Meteorological Research66(5): 808-825.DOI: 10.1029/2007JD008874 .
null
Fasullo J2004.A stratified diagnosis of the Indian monsoon-Eurasian snow cover relationship[J].Journal of Climate17(5): 1110-1122.
null
Jiang X Zhang T Tam C Y, et al, 2019.Impacts of ENSO and IOD on snow depth over the Tibetan Plateau: roles of convections over the western North Pacific and Indian Ocean[J].Journal of Geophysical Research: Atmospheres124(22): 11961-11975.DOI: 10.2151/jmsj.2018-032 .
null
Hahn D G Shukla J1976.An apparent relationship between Eurasian snow cover and Indian monsoon rainfall[J].Journal of Atmospheric Sciences33(12): 2461-2462.
null
Kalnay E Kanamitsu M Kistler R, et al, 1996.The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the American Meteorological Society77(3): 437-472.DOI: 10.1175/1520-0477(1996)077<0437: TNYRP>2.0.CO; 2 .
null
Kripalani R H Kulkarni A Sabade S S2003.Western Himalayan snow cover and Indian monsoon rainfall: a re-examination with INSAT and NCEP/NCAR data[J].Theoretical and Applied Climatology74(1): 1-18.DOI: 10.1007/s00704-002-0699-z .
null
Li J P Wu Z W2012.Importance of autumn Arctic Sea ice to northern winter snowfall[J].Proceedings of the National Academy of Sciences of the United States of America, 109: E1898-E1898.DOI: 10.1073/pnas.1205075109 .
null
Li J P Zheng F Sun C, et al, 2019.Pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate: a review[J].Advances in Atmospheric Sciences36(9): 902-921.
null
North G R Bell T L Cahalan R F, et al.1982.Sampling errors in the estimation of empirical orthogonal funcitons[J].Monthly Weather Review110(7): 699-706.
null
Sampe T Xie S P2010.Large-scale dynamics of the Meiyu-baiu rainband: environmental forcing by the westerly jet[J].Journal of Climate23(1): 113-134.DOI: 10.1175/2009JCLI3128.1 .
null
Shaman J Tziperman E2005.The effect of ENSO on Tibetan Plateau snow depth: a stationary wave teleconnection mechanism and implications for the South Asian monsoons[J].Journal of Climate18(12): 2067-2079.
null
Shen C M Wang W C Zeng G2011.Decadal variability in snow cover over the Tibetan Plateau during the last two centuries[J].Geophysical research letters38(10): 125-132.DOI: 10.1029/2011GL047288 .
null
Sun J Q Wang H J Yuan W, et al, 2010.Spatial-temporal features of intense snowfall events in China and their possible change[J].Journal of Geophysical Research: Atmospheres, 115, D16110: 1-8.DOI: 10.1029/2009jd013541 .
null
Wallace J M Gutzler D S1981.Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter[J].Monthly Weather Review109(4): 784-812.
null
Wang Y J Qin D H2017.Influence of climate change and human activity on water resources in arid region of Northwest China: an overview[J].Advances in Climate Change Research8(4): 268-278.
null
Watanabe M2004.Asian jet waveguide and a downstream extension of the North Atlantic Oscillation[J].Journal of Climate17(1): 4674-4691.DOI: 10.1175/JCLI-3228.1 .
null
Wen M Yang S Kumar A, et al, 2009.An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008[J].Monthly Weather Review137(3): 1111-1131.DOI: 10.1175/2008MWR2638.1 .
null
Wu T W Qian Z A2003.The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: an observational investigation[J].Journal of Climate, 16: 2038-2051.DOI: 10.1175/1520-0442(2003)0162.0.CO; 2 .
null
Xie S P Hu K Hafner J, et al, 2009.Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Ni?o[J].Journal of Climate22(3): 730-747.
null
Xu W F Ma L J Ma M N, et al, 2017.Spatial-temporal variability of snow cover and depth in the Qinghai-Tibetan Plateau[J].Journal of Climate30(4): 1521-1533.DOI: 10.1175/JCLI-D-15-0732.1 .
null
Yang J L Liu Q Y Liu Z Y2010.Linking observations of the Asian monsoon to the Indian Ocean SST: possible roles of Indian Ocean basin mode and dipole mode[J].Journal of Climate23(21): 5889-5902.DOI: 10.1175/2010JCLI2962.1 .
null
Yuan C Tozuka T Miyasaka T, et al, 2009.Respective influences of IOD and ENSO on the Tibetan snow cover in early winter[J].Climate Dynamics33(4): 509.DOI: 10.1007/s00382-008-0495-2 .
null
Zhou B T Wang Z Q Shi Y, et al, 2018.Historical and future changes of snowfall events in China under a warming background[J].Journal of Climate31(15): 5873-5889.DOI: 10.1007/s00382-021-06067-2 .
null
曹言超, 王晓春, 2022.青藏高原春季积雪对北半球夏季季节内振荡的影响[J].高原气象41(6): 1384-1398.DOI: 10.7552/j.issn.1000-0534.2021.00087.Cao Y C
null
Wang X C2022.Influence of the Qinghai-Xizang Plateau spring snow cover variation on the boreal summer intraseasonal oscillation[J].Plateau Meteorology41(6): 1384-1398.DOI: 10.7552/j.issn.1000-0534.2021.00087 .
null
丁瑞强, 李建平, 2009.非线性误差增长理论在大气可预报性中的应用[J].气象学报67(2): 241-249.DOI: 10.3321/j.issn: 0577-6619.2009.02.007.Ding R Q
null
Li J P2009.Application of nonlinear error growth dynamics in studies of atmospheric predictability[J].Acta Meteorologica Sinica67(2): 241-249.DOI: 10.3321/j.issn: 0577-6619.2009.02.007 .
null
董文杰, 韦志刚, 范丽军, 2001.青藏高原东部牧区雪灾的气候特征分析[J].高原气象20(4): 402-406.
null
Dong W J Wei Z G Fan L J2001.Climatic character analyses of snow disasters in east Qinghai-Xizang Plateau livestock farm[J].Plateau Meteorology20(4): 402-406.
null
龚道溢, 王绍武, 2003.近百年北极涛动对中国冬季气候的影响[J].地理学报58(4): 559-568.
null
Gong D Y Wang S W2003.Influence of Arctic Oscillation on winter climate over China[J].Acta Geographica Sinica58(4): 559-568.
null
梁潇云, 钱正安, 李万元, 2002.青藏高原东部牧区雪灾的环流型及水汽场分析[J].高原气象21(4): 359-367.
null
Liang X Y Qian Z A Li W Y2002.Analyses on circulation patterns and water vapor fields of snow disaster weather in eastern pasture areas of Qinghai-Xizang Plateau[J].Plateau Meteorology21(4): 359-367.
null
刘玉莲, 任国玉, 于宏敏, 等, 2012.我国强降雪气候特征及其变化[J].应用气象学报24(3): 304-313.
null
Liu Y L Ren G Y Yu H M, et al, 2012.Climatic characteristics of intense snowfall in China with its variation[J].Journal of Applied Meteorological Science24(3): 304-313.
null
覃郑婕, 侯书贵, 王叶堂, 等, 2017.青藏高原冬季积雪时空变化特征及其与北极涛动的关系[J].地理研究36(4): 112-125.DOI: 10.11821/dlyj201704012.Qin Z J
null
Hou S G Wang Y T, et al, 2017.Spatio-temporal variability of winter snow cover over the Tibetan Plateau and its relation to Arctic Oscillation [J].Geographical Research36(4): 112-125.DOI: 10.11821/dlyj201704012 .
null
沈永平, 王国亚, 2013.IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J].冰川冻土35(5): 1068-1076.DOI: 10.7522/j.issn.1000.0240.2013.0120.Shen Y P
null
Wang G Y2013.Key findings and assessment results of IPCC WGI Fifth Assessment Report[J].Journal of Glaciology and Geocryology35(5): 1068-1076.DOI: 10.7522/j.issn.1000.0240.2013.0120 .
null
索渺清, 丁一汇, 王遵娅, 等, 2008.冬半年南支西风中Rossby波传播及其与南支槽形成的关系[J].应用气象学报19(6): 731-740.
null
Suo M Q Ding Y H Wang Z Y, et al, 2008.Relationship between Rossby wave propagation in southern branch trough in wintertime[J].Journal of Applied Meteorological Science19(6): 731-740.
null
孙秀忠, 罗勇, 张霞, 等, 2010.近46 年来我国降雪变化特征分析[J].高原气象29(6): 1594-1601.
null
Sun X Z Luo Y Zhang X, et al, 2010.Analysis on snowfall change characteristic of China in recent 46 years[J].Plateau Meteorology29(6): 1594-1601.
null
王澄海, 李燕, 王艺, 等, 2015.北半球大气环流及其冬季风的年代际变化对青藏高原冬季降雪的影响[J].气候与环境研究20 (4): 421-432.
null
Wang C H Li Y Wang Y, et al, 2015.Impacts of interdecadal variability of circulation and winter monsoon on winter snowfall over the Tibetan Plateau [J].Climatic and Environmental Research20 (4): 421-432.
null
向楠, 巩远发, 李卓敏, 2023.青藏高原东部和西南地区低温冰冻雨雪事件的时空变化特征[J].高原气象42(1): 13-24.DOI: 10.7552/j.issn.1000.0534.2022.00034.Xiang N
null
Gong Y F Li Z M2023.Temporal and spatial variation characteristics of low temperature freezing rain and snow events in the eastern Qinghai-Xizang Plateau and southwestern China [J].Plateau Meteorology42(1): 13-24.DOI: 10.7552/j.issn.1000.0534.2022.00034 .
null
张自银, 龚道溢, 郭栋, 等, 2008.我国南方冬季异常低温和异常降水事件分析[J].地理学报63(9): 899-912.
null
Zhang Z Y Gong D Y Guo D, et al, 2008.Anomalous winter temperature and precipitation events in southern China[J].Acta Geographica Sinica63(9): 899-912.
null
张志富, 希爽, 余予, 等, 2015.1961-2012年中国5类主要冰冻天气的气候及变化特征[J].冰川冻土37(6): 1435-1442.DOI: 10.7522/j.isnn.1000-0240.2015.0159.Zhang Z F
null
Xi S Yu Y, et al, 2015.Climatic characteristics and variations of the gelivation weathers in China during 1961-2012[J].Journal of Glaciology and Geocryology37(6): 1435-1442.DOI: 10.7522/j.isnn.1000-0240.2015.0159 .
文章导航

/