京津冀地区倒春寒时空特征及风险概率统计分析
收稿日期: 2023-08-14
修回日期: 2023-12-18
网络出版日期: 2023-12-18
基金资助
河北省气象局科研项目(19ky24); 承德市基础研究项目(202201A105)
Statistical Analysis of Spatial and Temporal Characteristics and Risk Probability of Late Spring Coldness in Beijing-Tianjin-Hebei Region
Received date: 2023-08-14
Revised date: 2023-12-18
Online published: 2023-12-18
利用京津冀99个国家气象站1961 -2020年3 -5月日气温数据, 应用MK趋势检验等方法, 分析倒春寒发生频次、 持续天数和站次比时空分布规律, 基于信息扩散理论评估不同等级倒春寒风险概率。结果表明: 近30年99个国家气象站共发生2570次倒春寒, 轻度最多, 重度最少。发生频次上, 轻度和中度由北向南递减, 重度自东北向西南递减, 4月轻度、 中-重度和发生总次数均最多, 年际变化呈下降趋势, 其中3 -5月和5月显著下降。总持续天数上, 轻度和重度由东北向西南递减, 中度呈南北高、 中间低的格局。各站轻度平均持续天数相差不大, 中度和重度则差异明显, 平均持续天数随着等级的增大而跃增。年均倒春寒持续天数为6.9 d·a-1, 呈下降趋势, 降幅为1.5 d·(10a)-1。88.9%的站点持续天数呈年际下降趋势, 35个站显著下降, 南部比北部降幅更大。3 -5月和5月站次比年际下降趋势显著, 4月轻度和中-重度站次比均最高, 各月轻度站次比均远高于中-重度。倒春寒风险随着等级升高呈阶梯式降低, 轻度2年一遇以下约占34.3%的站点, 主要在北京、 石家庄、 邢台和邯郸等地; 中度5~10年一遇和10年一遇以下的站点约占90%, 前者集中在京津冀南北两端, 后者大多位于京津冀中部。研究区重度倒春寒风险均较低, 高达97.0%的站点为25年一遇以下。
童俊 , 孟旭芹 , 赵亮 , 彭九慧 , 张晓辉 , 陈思雨 . 京津冀地区倒春寒时空特征及风险概率统计分析[J]. 高原气象, 2024 , 43(4) : 955 -966 . DOI: 10.7522/j.issn.1000-0534.2023.00103
Based on the daily temperature data of 99 national meteorological stations in Beijing-Tianjin-Hebei region from March to May 1961 to 2020, the statistical methods such as Mann-Kendall trend test were used to analyze spatial and temporal distribution characteristics of late spring coldness from frequency, duration days and ratio of occurring stations to all stations, and the risk probability of different levels of late spring coldness was evaluated based on the information diffusion theory.The results indicated that: In the past 30 years, 2570 cases of late spring coldness occurred at 99 national meteorological stations, with the mildest and the least severe.In terms of frequency, the mild and moderate late spring coldness decreased from north to south, while severe late spring coldness decreased from northeast to southwest, the mild, moderate-severe and the total late spring coldness were most in April, the inter-annual occurrence frequency showed a downward trend, with a significant decrease from March to May and May.In terms of total duration days, mild and severe late spring coldness decreased from northeast to southwest, with moderate late spring coldness showing a pattern of high in north and south and low in middle.The average duration days of mild late spring coldness at each station was not significantly different, while the difference was significant in moderate and severe late spring coldness, the average duration days increased sharply with the increase of level.The annual mean duration days of late spring coldness was 6.9 d·a-1, showing a downward trend, with a decrease rate of 1.5 d·(10a)-1.The ratio of the stations showed an inter-annual downward trend in duration days was 88.9%, with 35 stations showing a significant decrease and the southern region experiencing a greater decrease than the northern region.The inter-annual downward trend in ratio of late spring coldness stations in March to May and May was significant, with the highest ratios of mild and moderate-severe late spring coldness in April, and the ratio of mild late spring coldness was much higher than that of moderate-severe late spring coldness in each month.The risk of late spring coldness decreased in a stepwise manner as the level increased, The stations with risk was mild and a return period of about 2 years or less was about 34.3% of all stations, mainly in Beijing, Shijiazhuang, Xingtai and Handan; The stations with risk was moderate and a return period of 5~10 years and 10 years or less was about 90% of all stations, and the former was concentrated at the north and south ends of Beijing-Tianjin-Hebei region, while the latter was mostly located in the central part of Beijing-Tianjin-Hebei region.The risk of severe late spring coldness in the research area was relatively low, with up to 97% of severe stations with a return period of about 25 years or less.
null | |
null | IPCC, 2013, Climate change 2013: The physical science basis[R].StockerTF, QinD, PlattnerGK, alet, eds.Contribution of Working Group I to the Fifth Assessment Report of the intergovernmental panel on climate change.Cambridge: Cambridge University Press. |
null | 陈翔, 林涛, 林非非, 等, 2020.黄淮麦区小麦倒春寒危害机理及防控措施研究进展[J].麦类作物学报, 40(2): 243-250.DOI: 10.7606/j.issn.1009-1041.2020.02.14.Chen X , |
null | |
null | 高操, 邢丽珠, 张方敏, 等, 2020.山东省“倒春寒”时空分布特征[J].江苏农业科学, 48(12): 238-245.DOI: 10.15889/j.issn.1002-1302.2020.12.049.Gao C , |
null | |
null | 管玥, 刘佳鸿, 何奇瑾, 等, 2021.基于信息扩散理论分析华北平原夏玉米花期高温热害的风险概率[J].中国农业气象, 42(7): 606-615.DOI: 10.3969/j.issn.1000-6362.2021.07.007.Guan Y , |
null | |
null | 李德萍, 张凯静, 张璐, 等, 2020.青岛地区倒春寒时空特征及气象指标研究[J].中国生态农业学报(中英文), 28(11): 1673-1681.DOI: 10.13930/j.cnki.cjea.200560.Li D P , |
null | |
null | 李红英, 林纾, 王云鹏, 等, 2022.1961-2017年京津冀地区寒潮活动特征[J].干旱气象, 40(1): 41-48.DOI: 10.11755/j.is sn.1006-7639(2022)-01-0041.Li H Y , |
null | |
null | 李瑞青, 黄晓璐, 宋桂英, 等, 2023.内蒙古东西部典型地区夏季极端暴雨特征对比分析[J].高原气象, 42(5): 1218-1231.DOI: 10.7522/j.issn.1000-0534.2022.0009.Li R Q , |
null | |
null | 李宛鸿, 徐影, 2023.CMIP6模式对青藏高原极端气温指数模拟能力评估及预估[J].高原气象, 42(2): 305-319.DOI: 10.7522/ j.issn.1000-0534.2022.00032.Li W H , |
null | |
null | 梁阔, 李丽平, 任景华, 等, 2023.中纬度海温对北方冬季寒潮强度异常的协同影响[J].高原气象, 42(3): 711-724.DOI: 10.7522/j.issn.1000-0534.2022.00095.Liang K , |
null | |
null | 林纾, 黄鹏程, 卢国阳, 等, 2022.冬季全国性寒潮识别标准及其气候变化特征[J].高原气象, 41(6): 1522-1531.DOI: 10.7522/j.issn.1000-0534.2021.00088.Lin S , |
null | |
null | 刘明歆, 李艳, 吕春艳, 2021.中国冬季两类极端低温事件特征及其大气环流成因分析[J].高原气象, 40(3): 603-620.DOI: 10.7522/j.issn.1000-0534.2020.00093.Liu M X , |
null | |
null | 卢尧, 沈阳, 杨琼琼, 等, 2021.江苏省1981-2020年倒春寒气象指标研究[J].河南科学, 39(8): 1333-1339. |
null | |
null | 马德栗, 刘敏, 李兰, 等, 2011.湖北省倒春寒发生程度评估模型[J].中国农业气象, 32(1): 134-138.DOI: 10.3969/ j.issn.1000-6362.2011.01.024.Ma D L , |
null | |
null | 欧行奇, 王玉玲, 2019.黄淮南片麦区小麦耐倒春寒育种研究初探[J].麦类作物学报, 39(5): 560-566.DOI: 10.7606/ j.issn.1009-1041.2019.05.07.Ou X Q , |
null | |
null | 彭建强, 2017.加快推进京津冀农业协同发展[N].河北日报, 2017-06-07(07).Peng J Q, 2017.Accelerate the coordinated development of agriculture in Beijing, Tianjin and Hebei[N].Hebei Daily, 2017-06-07(7). |
null | 乔雪梅, 刘普幸, 2020.中国北方地区寒潮时空特征及其成因分析[J].冰川冻土, 42(2): 357-367.DOI: 10.7522/j.issn.1000-0240.2020.0044.Qiao X M , |
null | |
null | 宋军芳, 刘强军, 焦玉玲, 等, 2019.2018年4月晋城市倒春寒天气及气象服务分析[J].中国农学通报, 35(20): 65-69.DOI: 10.11924/j.issn.1000-6850.casb18070089.Song J F , LiuQ J, JiaoY L, et al, 2019.Analysis of late spring coldness and weather service in April 2018 in Jincheng[J].Chinese Agricultural Science Bulletin, 35(20): 65-69.DOI: 10.11924/j.issn.1000-6850.casb18070089 . |
null | 童俊, 孟旭芹, 赵亮, 等, 2023.1991-2020年河北省倒春寒时空特征及气象指标分析[J].气象与环境学报, 39(4): 162-168.DOI: 10.3969/j.issn.1673-503X.2023.04.020.Tong J , |
null | |
null | 王纯枝, 郑昌玲, 张艳红, 等, 2022.2022年春季气象条件对农业生产的影响[J].中国农业气象, 43(8): 670-673.DOI: 10.3969/j.is sn.1000-6362.2022.08.007.Wang C Z , |
null | |
null | 王洪霞, 苗爱梅, 邱贵强, 等, 2023.“0711”山西晋城极端强降水过程的宏微观特征分析[J].高原气象, 42(5): 1232-1246.DOI: 10.7522/j.issn.1000-0534.2022.00103.Wang H X , |
null | |
null | 王维领, 刘畅, 张雨婷, 等, 2022.不同基因型小麦品种倒春寒抗性分析及其评价[J].麦类作物学报, 42(10): 1220-1230.DOI: 10.7606/j.issn.1009-1041.2022.10.06.Wang W L , |
null | |
null | 王学林, 黄琴琴, 柳军, 2019.基于信息扩散理论的南方双季早稻气象灾害风险评估[J].中国农业气象, 40(11): 712-722.DOI: 10.3969/j.issn.1000-6362.2019.11.005.Wang X L , |
null | |
null | 向楠, 巩远发, 李卓敏, 2023.青藏高原东部和西南地区低温冰冻雨雪事件的时空变化特征[J].高原气象, 42(1): 13-24.DOI: 10.7522/j.issn.1000-0534.2022.00034.Xiang N , |
null | |
null | 薛辉, 余慷, 马晓玲, 等, 2018.黄淮麦区小麦品种耐倒春寒相关性状的评价及关联分析[J].麦类作物学报, 38(10): 1174-1188. |
null | |
null | 严中伟, 丁一汇, 翟盘茂, 等, 2020.近百年中国气候变暖趋势之再评估[J].气象学报, 78(3): 370-378.DOI: 10.11676/qxxb2020. 028.Yan Z W , |
null | |
null | 杨涵洧, 龚志强, 王晓娟, 等, 2021.中国东部夏季极端降水年代际变化特征及成因分析[J].大气科学, 45(3): 683-696.DOI: 10.3878/j.issn.1006-9895.2007.19247.Yang H W , |
null | |
null | 杨文刚, 黄永学, 刘可群, 等, 2018.倒春寒气象指标及等级划分研究[J].湖北农业科学, 57(15): 49-53.DOI: 10.14088/j.cnki.issn0439-8114.2018.15.012.Yang W G , |
null | |
null | 尤红, 周泓, 杨红, 等, 2013.云南倒春寒天气过程的分析研究[J].气象, 39(6): 738-748.DOI: 10.7519/j.issn.1000-0526.2013.06.010.You H , |
null | |
null | 张晶晶, 辛学飞, 2016.2015年九江地区“倒春寒”天气过程分析[J].安徽农业科学, 44(18): 164-167.DOI: 10.3969/ j.issn.0517-6611.2016.18.055.Zhang J J , |
null | |
null | 张霞, 段建平, 马柱国, 2023.基于日干旱指数的青藏高原1979-2020年干湿变化特征分析[J].高原气象, 42(4): 870-886.DOI: 10.7522/j.issn.1000-0534.2022.00093.Zhang X , |
null | |
null | 赵刚, 申双和, 褚荣浩, 2018.江苏省倒春寒发生程度评估[J].江苏农业科学, 46(6): 243-247.DOI: 10.15889/j.issn.1002-1302. 2018.06.063.Zhao G , |
null | |
null | 中华人民共和国质量监督检验检疫总局, 中国国家标准化管理委员会, 2017. GB/T 34816-2017 倒春寒气象指标 [S].北京: 中国标准出版社.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; China National Standardization Management Committee, 2017. GB/T 34816-2017 Meteorological index of late spring coldness[S].Beijing: China Standards Press. |
/
〈 |
|
〉 |