2022年7 -8月黄河中游强降水极端性特征及其形成机制
收稿日期: 2023-08-08
修回日期: 2023-12-25
网络出版日期: 2023-12-25
基金资助
河南省联合基金(应用攻关类)项目(222103810092); 中国气象局气象能力提升联合研究专项(22NLTSY005); 河南省科技厅科技攻关项目(232102320027); 预报员联盟复盘总结专项(FPZJ2023-077)
Extreme Characteristics and Formation Mechanism of Heavy Rainfall in the Middle Reaches of the Yellow River from July to August 2022
Received date: 2023-08-08
Revised date: 2023-12-25
Online published: 2023-12-25
采用国家和省级气象站降水观测资料、 欧洲中期天气预报中心ERA5再分析资料和美国国家环境信息中心地形高程数据等, 详细分析了2022年7 -8月黄河中游持续强降水过程的极端性特征和形成机制。结果表明: (1)研究时段黄河中游共出现11轮强降水过程, 具有持续时间长、 累计雨量大、 降水时间间隔短、 强降水落区重叠性高等特点; 18个站点累计降水量的标准化距平超过2.5, 多次降水过程中最大雨强超过50 mm·h-1, 表现出显著极端性特征, 且8月降水的极端性强于7月; 强降水雨带分布和黄河中游地形特征密切相关。(2)7 -8月亚洲中高纬度贝湖附近高度场标准化距平达-2.5~-1.5(8月超过-3.5), 低槽较常年同期异常偏强; 强降水过程中副高西脊点呈西进状态, 7月副高脊线和北界南北摆幅较大, 副高的每一次南北摆动与来自贝湖的冷空气结合, 引发一次次强降水过程; 8月副高脊线和北界缓慢南退, 摆幅较小, 持续性强降水形成于副高边缘。(3)8月水汽输送来自孟加拉湾、 南海和东海, 整层水汽通量积分标准化距平达2.5以上, PWAT维持40~60 mm, 其标准化距平在内蒙古南部和晋陕区间北部均为2.5~3.5, 局部3.5以上, 水汽条件明显强于7月。(4)黄河中游上空存在上干冷下暖湿的不稳定层结, 中低层36°N以北形成锋生, 北部整层出现上升运动, 垂直速度标准化距平达-2.5~-0.5, 异常偏强, 与强降水落区对应。(5)8月锋生函数分析表明, 黄河中游北部降水发生前及发生时均有锋生, 锋生值增减与降水强弱变化趋势一致; 变形项对总锋生贡献大, 倾斜项对总锋消贡献大; 降水强度大的过程, 锋生伸展高度较高, 强度小的过程锋生高度较低, 锋生值相对较小。
乔春贵 , 王国安 . 2022年7 -8月黄河中游强降水极端性特征及其形成机制[J]. 高原气象, 2024 , 43(4) : 919 -932 . DOI: 10.7522/j.issn.1000-0534.2023.00104
The extreme characteristics and formation mechanism of the sustained heavy rainfall process in the middle reaches of the Yellow River from July to August 2022 were analyzed in detail using precipitation observation data from national and provincial meteorological stations, ERA5 reanalysis data from the European Medium Range Weather Forecast Center, and terrain elevation data from the National Environmental Information Center of the United States.The results indicate that: (1) a total of 11 heavy precipitation processes occurred in the middle reaches of the Yellow River during the research period, characterized by long duration, large cumulative rainfall, short precipitation time intervals, and high overlap of heavy rainfall areas.The standardized anomaly of accumulated precipitation at 18 stations exceeds 2.5, the maximum hourly rainfall intensity exceeds 50 mm/h during multiple processes, exhibiting significant extreme characteristics, and the extreme of precipitation is stronger in August than that in July.The distribution of heavy rain bands is closely related to the topographic characteristics of the middle reaches of the Yellow River.(2) From July to August, the standardized anomaly near Lake Baikal in mid to high latitudes Asia reached -2.5 to -1.5 (Exceeding -3.5 in August), and the low trough is abnormally strong compared to the same period in previous year.During processes of heavy precipitation, the western ridge of the subtropical high is in a westward moving state.The ridge line of the subtropical high and the north-south boundary of the northern boundary have a large swing in July.Each north-south oscillation of the subtropical high combines with cold air from Lake Baikal, triggering a series of heavy precipitation processes.The ridge line and northern boundary of the subtropical high slowly retreat to the south in August with a small amplitude, and persistent heavy precipitation occurred at the edge of the subtropical high.(3) The water vapor come from the Bay of Bengal, South China Sea, and East China Sea, with an integrated standardized anomaly of 2.5 for the entire layer of water vapor flux in August.PWAT maintains 40~60 mm, with its standardized anomaly ranging from 2.5 to 3.5 in the southern part of Inner Mongolia and the northern part of the Shaanxi region, locally exceeding 3.5.The water vapor conditions are significantly stronger in August than in July.(4) There is an unstable stratification above the middle reaches of the Yellow River, characterized by upper dry cold and lower warm wet.Frontogenesis is formed north of 36°N in the middle and lower layers, and the upward movement occurs throughout the northern layer.The vertical velocity standardization anomaly reaches -2.5 to -0.5, which is corresponding to strong precipitation area.(5) The analysis of frontogenesis function in August shows that there were frontogenesis before and during the occurrence of precipitation in the northern part of the middle reaches of the Yellow River.The increase and decrease in frontogenesis values are consistent with the trend of precipitation intensity variations.The deformation term contributes significantly to the total frontogenesis, while the tilt term contributes significantly to the total dissipation.The process with high precipitation intensity results in higher frontogenesis extension height, while the process with low intensity results in lower frontogenesis height and relatively smaller frontogenesis value.
null | |
null | 陈炯, 郑永光, 张小玲, 等, 2013.中国暖季短时强降水分布和日变化特征及其与中尺度对流系统日变化关系分析[J].气象学报, 71(3): 367-382.DOI: 10.11676/qxxb2013.035.Chen J , |
null | |
null | 丁一汇, 柳艳菊, 宋亚芳, 2020.东亚夏季风水汽输送带及其对中国大暴雨与洪涝灾害的影响[J].水科学进展, 31(5): 629-643.DOI: 10.14042/j.cnki.32.1309.2020.05.001.Ding Y H , |
null | |
null | 丁一汇, 张建云, 2009.暴雨洪涝[M].北京: 气象出版社.Ding Y H, Zhang J Y, 2009.Rainstorm and flood [M].Beijing: China Meteorological Press. |
null | 郭大梅, 潘留杰, 李明娟, 等, 2022.关中北部一次暴雨水汽条件及不稳定分析[J].高原气象, 41(6): 1481-1491.DOI: 10.7522/j.issn.1000-0534.2021.00090.Guo D M , |
null | |
null | 何钰, 陈小华, 李耀孙, 等, 2021.云南省副热带高压外围类短时强降水的雷达回波特征[J].气象, 47(4): 450-462.DOI: 10.7519/j.issn.1000-0526.2021.04.006.He Y , |
null | |
null | 贺哲, 竹磊磊, 张霞, 等, 2022.河南省秋季连续两个暴雨日的锋生和不稳定诊断分析[J].气象, 48(9): 1101-1115.DOI: 10.7519/j.issn.1000-0526.2022.040602.He Z , |
null | |
null | 胡富泉, 郭敏, 张家澄, 1999.强对流天气短期预报θ se特型法的业务应用[J].成都气象学院学报(3): 28-34. |
null | |
null | 黄楚惠, 李国平, 2007.一次东移高原低涡的天气动力学诊断分析[J].气象科学, 27(): 36-43. |
null | |
null | 黄菲, 姜治娜, 2002.欧亚大陆阻塞高压的统计特征及其与中国东部夏季降水的关系[J].中国海洋大学学报(自然科学版), 32(2): 186-192. |
null | |
null | 蒋伊蓉, 李晓利, 刘慧敏, 等, 2022.引起陕北暴雨的西北涡特征分析[J].高原气象, 41(3): 646-654. DOI: 10.7522/j.issn.1000-0534.2021.00012.Jiang Y R , |
null | |
null | 井宇, 井喜, 王瑞, 等, 2008.黄河中游一次MCC致洪暴雨综合诊断分析[J].气象, 34(3): 56-62. |
null | |
null | 孔祥伟, 张君霞, 杨晓军, 等, 2022.西北地区东部强降水大尺度数值模式预报空间偏差分析[J].高原气象, 41(5): 1109-1123.DOI: 10.7522/j.issn.1000-0534.2021.00041.Kong X W , |
null | |
null | 李江波, 孔凡超, 曾建刚, 等, 2019.河北省副热带高压外围降水的特征与预报[J].气象, 45(11): 1539-1549.DOI: 10.7519/j.issn.1000-0526.2019.11.004.Li J B , |
null | |
null | 李娜, 冉令坤, 周玉淑, 等, 2013.北京“7·21”暴雨过程中变形场引起的锋生与倾斜涡度发展诊断分析[J].气象学报, (4): 593-605.DOI: 10.11676/qxxb2013.065.Li N , |
null | |
null | 李兆慧, 王东海, 王建捷, 等, 2011.一次暴雪过程的锋生函数和急流-锋面次级环流分析[J].高原气象, 30(6): 1505-1515. |
null | |
null | 刘燕飞, 隆霄, 王晖, 2015.陕西中西部地区一次暴雨过程的数值模拟研究[J].高原气象, 34(2): 378-388.DOI: 10.7522/j.issn.1000-0534.2013.00182.Liu Y F , |
null | |
null | 那莹, 王冀, 张英娟, 等, 2022.分段副热带高压位置指数的建立及应用[J].气象, 48(11): 1439-1448.DOI: 10.7519/j.issn.1000-0526.2022.052001.Na Y , |
null | |
null | 彭梅香, 刘萍, 邱淑会, 等, 2000.黄河中游地区致洪暴雨气候特征分析[J].气象与环境科学, 23(4): 27-28. |
null | |
null | 乔春贵, 梁钰, 王君, 等, 2021.黄河中游一次致洪暴雨过程的天气学诊断[J].人民黄河, 43(8): 26-32.DOI: 10.3969/j.issn.1000-1379.2021.08.005.Qiao C G , |
null | |
null | 邱贵强, 赵桂香, 董春卿, 等, 2018.一次副热带高压边缘突发性暴雨的锋生及水汽特征分析[J].高原气象, 37(4): 946-957.DOI: 10.7522/j.issn.1000-0534.2017.00059.Qiu G Q , |
null | |
null | 宋清芝, 吕林宜, 2018.黄河中游一次致洪暴雨过程的形成机理[J].气象与环境科学, 41(2): 54-61. DOI: 10.16765/j.cnki.1673-7148.2018.02.008.Song Q Z , |
null | |
null | 孙继松, 2017.短时强降水和暴雨的区别与联系[J].暴雨灾害, 36(6): 498-506.DOI: 10.3969/j.issn.1004-9045.2017.06.002.Sun J S , 2017.Differences and relationship between flash heavy rain and heavy rainfall[J].Torrential Rain and Disasters, 36(6): 498-506.DOI: 10.3969/j.issn.1004-9045.2017.06.002 . |
null | 汤克靖, 杨贤为, 姚佩珍, 等, 1995.黄河中游致洪暴雨的特征分析[J].灾害学 10(3): 44-50.Tang K J, Yang X W, Yao P Z, et al, 1995.Characteristic analysis for rainstorm inducing floods in the middle reaches of the Yellow River [J].Journal of Catastrophology, 10(3): 44-50. |
null | 陶诗言, 卫捷, 2006.再论夏季西太平洋副热带高压的西伸北跳[J].应用气象学报, 17(5): 513-525. |
null | |
null | 王伏村, 许东蓓, 姚延锋, 等, 2016.一次陇东大暴雨的锋生过程及倾斜涡度发展[J].高原气象, 35(2): 419-431.DOI: 10.7522/j.issn.1000-0534.2014.00127.Wang F C , |
null | |
null | 徐姝, 东高红, 熊明明, 2019.冷池对引发新乡“7·9”特大暴雨的中尺度对流系统的影响分析[J].气象, 45(10): 1426-1438.DOI: 10.7519/j.issn.1000-0526.2019.10.009.Xu S , |
null | |
null | 徐亚钦, 吴松涛, 杨旺文, 等, 2019.浙江省梅雨锋强降水的锋生及环流特征分析[J].大气科学, 43(6): 1219-1232.DOI: 10.3878/j.issn.1006-9895.1907.18187.Xu Y Q , |
null | |
null | 杨秀庄, 杜小玲, 吴古会, 等, 2016.云贵高原东段初夏辐合线锋生型暴雨研究[J].高原气象, 35(4): 920-933.DOI: 10.7522/j.issn.1000-0534.2015.00008.Yang X Z , |
null | |
null | 张君霞, 黄武斌, 王一丞, 等, 2024.河西走廊西部一次暴雨过程降水特征及极端性分析[J].高原气象, 43(1): 156-165.DOI: 10.7522/j.issn.1000-0534.2023.00036.Zhang J X , |
null | |
null | 张亚男, 段旭, 2018.2008年初昆明准静止锋生消及移动成因分析[J].云南大学学报(自然科学版), 40(1): 113-124.DOI: 10.7540/j.ynu.20170240.Zhang Y N , |
null | |
null | 章大全, 袁媛, 韩荣青, 2023.2022年夏季我国气候异常特征及成因分析[J].气象, 49(1): 110-121.DOI: 10.7519/j.issn.1000-0526.2022.112501.Zhang D Q , |
null | |
null | 赵桂香, 薄燕青, 邱贵强, 等, 2017.黄河中游一次大暴雨的观测分析与数值模拟[J].高原气象, 36(2): 436-454.DOI: 10.7522/j.issn.1000-0534.2016.00093.Zhao G X , |
null | |
null | 朱乾根, 林锦瑞, 寿绍文, 等, 2007.天气学原理和方法[M].北京: 气象出版社.Zhu Q G, Lin J R, Shou S W, et al, 2007.Principles and methods of weather science [M].Beijing: China Meteorological Press. |
/
〈 |
|
〉 |