收稿日期: 2022-11-25
修回日期: 2023-03-28
网络出版日期: 2023-01-08
基金资助
国家自然科学基金项目(42030603); 云南大学研究生科研创新项目(KC-22221251)
Influence of Circumglobal Teleconnection on the Interannual Variability of Winter Precipitation over the Southeast Asian Low-Latitude Highlands
Received date: 2022-11-25
Revised date: 2023-03-28
Online published: 2023-01-08
根据欧洲中期天气预报中心(ECMWF)提供的ERA5再分析资料、 美国地质调查局与加州大学共同开发的气候灾害组融合站点(CHIRPS)月平均降水资料, 以及全球降水气候项目提供的全球降水气候数据集(GPCP)月平均降水资料, 利用统计诊断方法研究了冬季环球遥相关(circumglobal teleconnection, CGT)对东南亚低纬高原地区同期降水年际变化的影响。相关分析的结果表明, CGT呈现方差贡献大致相当的两个主要模态, 垂直方向上呈现相当正压结构, 水平方向上的四个异常中心分别为位于地中海附近和印度半岛附近的负异常中心, 以及位于阿拉伯半岛附近和东南亚低纬高原附近的正异常中心。CGT第一模态与东南亚低纬高原冬季降水呈现显著的正相关关系, 在年际时间尺度上, 当冬季CGT处于正位相时, 欧洲西部、 阿拉伯半岛西北部、 阿拉伯海和东南亚低纬高原分别为异常“反气旋、 气旋、 反气旋、 气旋”控制。异常气旋东侧的西南风将增加孟加拉湾和中国南海进入东南亚低纬高原的水汽输送, 并在东南亚低纬高原地区辐合上升, 最终促使东南亚低纬高原地区冬季降水偏多; 反之, 当冬季CGT处于负位相时, 欧洲西部、 阿拉伯半岛西北部、 阿拉伯海和东南亚低纬高原为异常“气旋、 反气旋、 气旋、 反气旋”控制。异常反气旋东侧的东北风减弱了由孟加拉湾和中国南海进入东南亚低纬高原的水汽, 加之东南亚低纬高原处于异常辐散下沉区, 最终导致东南亚低纬高原地区冬季降水偏少。东南亚低纬高原12月、 1月和2月的降水与同期CGT之间也呈现显著的正相关关系, 联系两者的关键物理过程与整个冬季的一致。典型个例分析的结果进一步验证了相关分析所揭示的环球遥相关影响东南亚低纬高原冬季降水年际变化的关键物理过程。
徐铭阳 , 曹杰 . 环球遥相关对东南亚低纬高原冬季降水年际变化影响的研究[J]. 高原气象, 2024 , 43(4) : 1011 -1025 . DOI: 10.7522/j.issn.1000-0534.2023.00031
The influence of winter circumglobal teleconnection (CGT) on the interannual variability of winter precipitation in the Southeast Asian low-latitude highlands were statistically analyzed using ERA5 reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), monthly mean precipitation data from the Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) developed by the United States Geological Survey and the University of California and the monthly mean precipitation data of the Global Precipitation Climatology Project (GPCP) provided by the Global Precipitation Climatology Center.Results of correlation analysis show that the CGT presents two main patterns with approximately the same variance contribution rate.On the vertical direction, the CGT shows an equivalent barotropic structure with four anomalous centers.During the CGT positive phase, the negative anomalous centers are located near the Mediterranean Sea and the Indian Peninsula, and the positive anomalous centers near the Arabian Peninsula and Southeast Asian low-latitude highlands.The first mode of CGT (CGT1) significantly correlates with winter precipitation over the Southeast Asian low-latitude highlands on the interannual time scale.When the CGT1 is in the positive phase in winter, the anomalous "anticyclone, cyclone, anticyclone, cyclone" control the Western Europe, the northwestern Arabian Peninsula, the Arabian Sea and Southeast Asian low-latitude highlands, respectively.The anomalous southwesterly wind on the east side of the anomalous cyclone will increase the water vapor from the Bay of Bengal and the South China Sea to the Southeast Asian low-latitude highlands.The more water vapor converged and condensed in Southeast Asian low-latitude highlands finally results in heavier winter precipitation over the Southeast Asian low-latitude highlands.On the contrary, when the CGT1 is in the negative phase in winter, the Western Europe, the northwestern Arabian Peninsula, the Arabian Sea and the Southeast Asian low-latitude highlands are controlled by the anomalous "cyclone, anticyclone, cyclone, anticyclone".The anomalous northeast wind on the east flank of the anomalous anticyclone will reduce the water vapor from the Bay of Bengal and the South China Sea to the Southeast Asian low-latitude highlands.The anomalous divergence and descending motion further lead to less precipitation in winter over the Southeast Asian low-latitude highlands.The significant positive correlation between CGT and precipitation over the Southeast Asian low-latitude highlands, sharing almost the same key physical process as winter, can be observed in December, January and February.Results of typical case further confirm the key physical process through which the CGT modulates the interannual variability of winter precipitation over the Southeast Asian low-latitude highlands.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 程建刚, 晏红明, 严华声, 等, 2009.云南重大气候灾害特征和成因分析[M].北京: 气象出版社.Cheng J G, Yan H M, Yan H S, et al, 2009.Analysis on the characteristics and causes of major climatic disasters in Yunnan[M].Beijing: China Meteorological Press. |
null | 段旭, 陶云, 许美玲, 等, 2012.西风带南支槽对云南天气的影响[J].高原气象, 31(4): 1059-1065. |
null | |
null | 吕俊梅, 琚建华, 任菊章, 等, 2012.热带大气MJO活动异常对2009~2010年云南极端干旱的影响[J].中国科学(地球科学), 42(4): 599-613. |
null | DOI: 10.1007/s11783-011-0280-z.L ü J M, Ju, J H, |
null | 刘扬, 刘屹岷, 2016.我国西南地区秋季降水年际变化的空间差异及其成因[J].大气科学, 40(6): 1215-1226.DOI: 10.3878/j.issn.1006-9895.1511.15269.Liu Y , |
null | |
null | 刘扬, 刘屹岷, 2017.斯堪的纳维亚遥相关对我国西南西部深秋降水的影响[J].气候与环境研究, 22(1): 80-88.DOI: 10.3878/j.issn.1006-9585.2016.16029.Liu Y , |
null | |
null | 秦剑, 琚建华, 解明恩, 等, 1997.低纬高原天气气候[M].北京: 气象出版社.Qin J, Ju J H, Xie M E, et al, 1997.Low latitude plateau weather and climate[M].Beijing: China Meteorological Press. |
null | 宋洁, 杨辉, 李崇银, 2011.2009-2010年冬季云南严重干旱原因的进一步分析[J].大气科学, 35(6): 1009-1019. |
null | |
null | 陶威, 陈权亮, 2018.两类El Ni?o事件对我国西南地区冬季降水的影响[J].气候与环境研究, 23(6): 749-757.DOI: 10.3878/j.issn.1006-9585.2018.17165.Tao W , |
null | |
null | 陶云, 黄玮, 郑建萌, 等, 2014.云南冬季降水的演变特征及成因分析[J].高原气象, 33(1): 130-139.DOI: 10.7522/j.issn.1000-0534.2012.00180.Tao Y , |
null | |
null | 徐寒列, 李建平, 冯娟, 等, 2012.冬季北大西洋涛动与中国西南地区降水的不对称关系[J].气象学报, 70(6): 1276-1291.DOI: 10.11676/qxxb2012.107.Xu H L , |
null | |
null | 王斌, 李跃清, 2010.2010年秋冬季西南地区严重干旱与南支槽关系分析[J].高原山地气象研究, 30(4): 26-35.DOI: 10.3969/j.issn.1674-2184.2010.04.004.Wang B , |
null | |
null | 万云霞, 晏红明, 金燕, 等, 2020.低纬高原水汽输送特征及其对云南气候的影响[J].高原气象, 39(5): 925-934.DOI: 10.7522/j.issn.1000-0534.2019.00082.Wan Y X , |
null | |
null | 夏阳, 严小冬, 刘芷含, 等, 2023.中国西南贵州地区冬季凝冻日数的气候特征及其异常成因[J].高原气象, 42(1): 173-185.DOI: 10.7522/j.issn.1000-0534.2022.00028.Xia Y , |
null | |
null | 晏红明, 程建刚, 郑建萌, 等, 2012.2009年云南秋季特大干旱的气候成因分析[J].大气科学学报, 35(2): 229-239. |
null | |
null | 晏红明, 李清泉, 孙丞虎, 等, 2013.中国西南区域雨季开始和结束日期划分标准的研究[J].大气科学, 37(5): 1111-1128.DOI: 10.3878/j.issn.1006-9895.2013.12118.Yan H M , |
null | |
null | 张强, 邹旭恺, 陈鲜艳, 等, 2022.考虑多尺度和蒸散影响的新干旱指数研究——以云南为例[J].高原气象, 41(4): 909-920.DOI: 10.7522/j.issn.1000-0534.2021.00026.Zhang Q , |
null | |
null | 张万诚, 万云霞, 任菊章, 等, 2011.水汽输送异常对2009年秋、冬季云南降水的影响研究[J].高原气象, 30(6): 1534-1542. |
null | |
null | 郑建萌, 姚愚, 李蕊, 等, 2021.El Ni?o背景下AO激发Rossby波对云南冬季极端降水的影响[J].高原气象, 40(4): 840-852.DOI: 10.7522/j.issn.1000-0534.2020.00069.Zheng J M , |
null | |
null | 周建琴, 晏红明, 2021.东部和中部型El Ni?o事件对云南冬季降水影响的差异分析[J].高原气象, 40(1): 98-108.DOI: 10. 7522/j.issn.1000-0534.2019.00124.Zhou J Q , |
null |
/
〈 |
|
〉 |