基于CMIP6多模式集合对长江上游地区暴雨的预估研究
收稿日期: 2023-09-23
修回日期: 2024-01-16
网络出版日期: 2024-01-16
基金资助
国家自然科学基金项目(42075081); 四川省自然科学基金青年项目(2023NSFSC0748); 第二次青藏高原综合科学考察研究项目(2019QZKK0103); 成都信息工程大学科技创新能力提升计划项目(KYQN202319)
Prediction of Rainstorm in the Upper Reaches of the Yangtze River Based on CMIP6 Multi-Model Ensemble
Received date: 2023-09-23
Revised date: 2024-01-16
Online published: 2024-01-16
为更好地应对长江上游地区未来气候变化导致的暴雨事件, 本文利用1990 -2014年长江上游地区687个气象观测站日降水资料及第六次耦合模式比较计划(Coupled Model Intercomparison Project Phase 6, CMIP6)中的24个全球气候模式的模拟结果, 研究了该地区2021 -2099年的年平均暴雨量、 暴雨天数和暴雨强度在不同共享社会经济路径(Shared Socioeconomic Pathways, SSPs)情景下的时空变化特征及其不确定性。研究结果表明: (1)相对参考时段(1995 -2014年), 长江上游地区预估总时段(2021 -2099年)及21世纪末期(2080 -2099年)的年平均暴雨量、 暴雨天数和暴雨强度在SSP1-2.6、 SSP2-4.5和SSP5-8.5情景下都以增多增强为主, 在SSP5-8.5情景下的增幅最大, 且模式间预估方向的一致性及预估值的确定性都随排放的增加而增加。预估总时段的暴雨量、 暴雨天数和暴雨强度在SSP1-2.6和SSP2-4.5情景下的分布相似, 但与SSP5-8.5情景下的分布有所不同。21世纪末期暴雨量及天数在三种情景下的分布相似, 暴雨强度变化的分布在SSP5-8.5情景下不同于SSP1-2.6及SSP2-4.5情景; (2)相对参考时段, 三种情景下长江上游的暴雨量在预估总时段分别以3.5 mm·(10a)-1, 5.4 mm·(10a)-1, 14.7 mm·(10a)-1的速率增加, 暴雨天数分别以0.045 d·(10a)-1, 0.07 d·(10a)-1, 0.18 d·(10a)-1的速率增加, 暴雨强度则分别以0.37 mm·d-1·(10a)-1, 0.78 mm·d-1·(10a)-1, 1.94 mm·d-1·(10a)-1的速率增强, 都通过99%信度检验及同号率检验, 预估值确定性较高的时期都出现在21世纪末期SSP5-8.5情景下; (3)三种情景下, 预估总时段的暴雨量、 暴雨天数和暴雨强度在空间上都主要呈增加趋势, 其中藏东南地区的暴雨量及暴雨天数的增速最大。暴雨强度增速最大的地区在SSP1-2.6情景下出现在四川北部, 而SSP2-4.5和SSP5-8.5情景下出现在云南北部; (4)三种情景下21世纪前期(2021 -2040年)暴雨量、 暴雨天数和暴雨强度相对参考时段的变化幅度不明显, 中期(2041-2060年)及后期暴雨量、 暴雨天数和暴雨强度在SSP2-4.5及SSP5-8.5情景下显著增多增强, 尤其在21世纪后期SSP5-8.5情景下的增幅最大, 模式间预估方向一致性最高。
张粟瑜 , 岑思弦 , 赖欣 , 张戈 , 张哲浩 , 姚思源 . 基于CMIP6多模式集合对长江上游地区暴雨的预估研究[J]. 高原气象, 2024 , 43(3) : 667 -682 . DOI: 10.7522/j.issn.1000-0534.2024.00003
To prepare for the heavy rainfall resulting from future climate change in the upper reaches of the Yangtze River, this paper analyzed daily precipitation data from 687 meteorological stations in the region between 1990 and 2014, as well as simulation results from 24 global climate models (GCMs) provided by the Coupled Model Intercomparison Project Phase 6 (CMIP6).The spatio-temporal characteristics and uncertainties of the mean annual rainstorm volume, rainstorm days and rainstorm intensity in the upper reaches of the Yangtze River during 2021 -2099 under different Shared Socioeconomic Pathways (SSPs) scenarios are studied.The results show: (1) Compared to the reference period of 1995 -2014, the mean annual volume, days and intensity of rainstorm in the upper reaches of the Yangtze River are projected to increase and strengthen during the whole projection period of 2021 -2099 and the end of the 21st century (2080 -2099) under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios.The largest increase is observed under the SSP5-8.5 scenario.The predicted direction is consistent and the certainty of the projection among models increases with higher emissions.The distribution of rainstorm volume, days and intensity during 2021 -2099 is similar under SSP1-2.6 and SSP2-4.5 scenarios, but differs from that of the SSP5-8.5 scenario.By the end of the 21st century, the distribution of volume and days of rainstorm is similar under the three scenarios.However, the distribution of rainstorm intensity under the SSP5-8.5 scenario differs from that under the SSP1-2.6 and SSP2-4.5 scenarios.(2) Relative to the reference period, the rainstorm volume in the upper reaches of the Yangtze River increases by 3.5 mm·(10a)-1, 5.4 mm·(10a)-1 and 14.7 mm·(10a)-1 under SSP1-2.6, SSP2-4.5, SSP5-8.5, respectively.The rainstorm days increases by 0.045 d·(10a)-1, 0.07 d·(10a)-1 and 0.18 d·(10a)-1 under the three scenarios, respectively.The rainstorm intensity increases by 0.37 mm·d-1·(10a)-1, 0.78 mm·d-1·(10a)-1 and 1.94 mm·d-1·(10a)-1 under the three scenarios, respectively.All of the trends pass the 99% confidence test and the same-sign rate test.The period with a high level of prediction certainty is expected to occur in the late 21st century under the SSP5-8.5 scenario.(3) The analysis of the three scenarios indicates an increasing trend in the volume, days and intensity of rainstorm throughout the whole prediction period.The region of southeast Tibet has experienced the highest growth rate in terms of volume and days of rainstorms.The region with the largest increasing trend of rainstorm intensity under the SSP1-2.6 scenario is in northern Sichuan, while under the SSP2-4.5 and SSP5-8.5 scenarios, it is in northern Yunnan.(4) During the early 21st century(2021 -2040), there is no significant change in the volume, days or intensity of rainstorm in the upper reaches of the Yangtze River, as compared to the reference period, under the three scenarios.While during the middle(2041 -2060)and the end of the 21st century, the volume, days and intensity of rainstorm increase significantly under the SSP2-4.5 and SSP5-8.5 scenarios.This effect is particularly pronounced during the end period of the 21st century under the SSP5-8.5 scenario, as well as the consistency of predicted direction among modes is the highest.
Key words: the upper reaches of the Yangtze River; CMIP6; projection; rainstorm; uncertainty
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈子凡, 王磊, 李谢辉, 等, 2022.西南地区极端降水时空变化特征及其与强ENSO事件的关系[J].高原气象, 41(3): 604-616.DOI: 10.7522/j.issn.1000-0534.2022.00004.Chen Z F , |
null | |
null | 程诗悦, 秦伟, 郭乾坤, 等, 2019.近50 年我国极端降水时空变化特征综述[J].中国水土保持科学, 17(3): 155-161.DOI: 10.16843/j.sswc.2019.03.020.Cheng S Y , |
null | |
null | 程雪蓉, 2019.基于CMIP5模式预估长江上游流域气温及降水时空特征[J].水电能源科学, 37(1): 13-16. |
null | |
null | 丁一汇, 2019.中国暴雨理论的发展历程与重要进展[J].暴雨灾害, 38(5): 395-406.DOI: 10.3969/j.issn.1004-9045.2019. 05.001.Ding Y H , 2019.The major advances and development process of the theory of heavy rainfalls in China [J].Torrential Rain and Disasters, 38(5): 395-406.DOI: 10.3969/j.issn.1004-9045.2019.05.001 . |
null | 冯亚文, 任国玉, 刘志雨, 等, 2013.长江上游降水变化及其对径流的影响[J].资源科学, 35(6): 1268-1276. |
null | |
null | 韩振宇, 高学杰, 徐影, 2021.多区域模式集合的东亚陆地区域的平均和极端降水未来预估[J].地球物理学报, 64(6): 1869-1884.DOI: 10.6038/cjg2021O0103.Han Z Y , |
null | |
null | 洪步庭, 任平, 苑全治, 等, 2019.长江上游生态功能区划研究[J].生态与农村环境学报, 35(8): 1009-1019.DOI: 10.19741/j.issn.1673-4831.2018.0459.Hong B T , |
null | |
null | 黄晓远, 李谢辉, 2022.基于CMIP6的西南暴雨洪涝灾害风险未来预估[J].应用气象学报, 33(2): 231-243.DOI: 10.11898/1001-7313.20220209.Huang X Y , |
null | |
null | 孔锋, 2020.基于SSPs情景的全球海陆暴雨时序演变对比和突变特征预估[J].水利水电技术, 51(10): 1-9.DOI: 10.13928/j.cnki.wrahe.2020.10.001.Kong F , 2020.SSPs scenarios-based evolution comparison and mutation characteristics pre-estimation of global sea-land rainstorm time series[J].Water Resources and Hydropower Engineering, 51(10): 1-9.DOI: 10.13928/j.cnki.wrahe.2020.10.001 . |
null | 李傲, 高媛, 崔春光, 2022.暴雨灾害预警信息传播渠道及社会管理机制分析[J].暴雨灾害, 41(3): 348-354.DOI: 10.3969/j.issn.1004-9045.2022.03.011.Li A , |
null | |
null | 李博, 周天军, 2010.基于IPCC A1B情景的中国未来气候变化预估: 多模式集合结果及其不确定性[J].气候变化研究进展, 6(4): 270-276. |
null | |
null | 李博渊, 胡芩, 2023.基于CMIP6 模式评估结果对未来青藏高原降水多情景预估 [J/OL].高原气象: 1-14.[2023-11-24].Hu Q, 2023.Multi-scenario projection of future precipitation over the Qinghai-Xizang (Tibetan) plateau based on CMIP6 model assessment results[J/OL].Plateau Meteorology: 1-14.[2023-11-24]. |
null | 李国平, 陈佳, 2018.西南涡及其暴雨研究新进展[J].暴雨灾害, 37(4): 293-302.DOI: 10.3969/j.issn.1004-9045.2018.04.001.Li G P , |
null | |
null | 李凌琪, 熊立华, 江聪, 等, 2015.气温对长江上游巴塘站年径流的影响分析[J].长江流域资源与环境, 24(7): 1142-1149.DOI: 10.11870/cjlyzyyhj201507009.Li L Q , |
null | |
null | 李柔珂, 李耀辉, 徐影, 2018.未来中国地区的暴雨洪涝灾害风险预估[J].干旱气象, 36(3): 341-352.DOI: 10.11755/j.issn.1006-7639(2018)-03-0341.Li R K , |
null | |
null | 时光训, 刘健, 马力, 等, 2017.1970~2014年长江流域极端降水过程的时空变化研究[J].水文, 37(4): 77-85. |
null | |
null | 史培军, 孔锋, 2016.1951~2010年中国年代际累积暴雨时空格局变化的相关因素研究[J].地理科学, 36(10): 1457-1465.DOI: 10.13249/j.cnki.sgs.2016.10.002.Shi P J , |
null | |
null | 唐明秀, 孙劭, 朱秀芳, 等, 2022.基于CMIP6的中国未来暴雨危险性变化评估[J].地球科学进展, 37(5): 519-534.DOI: 10.11867/j.issn.1001-8166.2022.019.Tang M X , |
null | |
null | 汪曼琳, 万新宇, 钟平安, 等, 2016.长江上游降水特征及时空演变规律[J].南水北调与水利科技, 14(4): 65-71.DOI: 10.13476/j.cnki.nsbdqk.2016.04.011.Wang M L , |
null | |
null | 王艳君, 姜彤, 施雅风, 2005.长江上游流域1961-2000年气候及径流变化趋势[J].冰川冻土, (5): 709-714.Wang Y J, Jiang T, Shi Y F, 2005.Changing trends of climate and runoff over the upper reaches of the Yangtze River in 1961-2000[J].Journal of Glaciology and Geocryology, 27(5): 709-714. |
null | 文传浩, 张智勇, 曹心蕊, 2021.长江上游生态大保护的内涵、 策略与路径[J].区域经济评论, (1): 123-130.DOI: 10.14017/j.cnki.2095-5766.2021.0016.Wen C H , |
null | |
null | 冶运涛, 梁犁丽, 龚家国, 等, 2014.长江上游流域降水结构时空演变特性[J].水科学进展, 25(2): 164-171.DOI: 10.14042/j.cnki.32.1309.2014.02.002.Ye Y T , |
null | |
null | 张春雨, 刘爱利, 吕嫣冉, 等, 2023.基于 CMIP6青藏高原腹地气候模拟评估及时空分析[J].高原气象, 42(5): 1144-1159.DOI: 10.7522/j.issn.1000-0534.2022.00104.Zhang C Y , |
null | |
null | 张金良, 罗秋实, 王冰洁, 等, 2023.城市极端暴雨洪涝灾害成因及对策研究进展与展望[J/OL].水资源保护: 1-13.[2023-09-14]. |
null | |
null | 张俊, 陈良华, 李波, 等, 2012.2011~2060年长江上游流域降水变化预估问题的探讨[J].水利水电技术, 43(11): 4-8+13.DOI: 10.13928/j.cnki.wrahe.2012.11.002.Zhang J , |
null | |
null | 张琪, 李跃清, 2014. 近 48年西南地区降水量和雨日的气候变化特征[J].高原气象, 33(2): 372-383.DOI: 10.7522/j.issn.1000-0534.2013.00032.Zhang Q , |
null | |
null | 周波涛, 蔡怡亨, 韩振宇, 2022.中国区域性暴雨事件未来变化: RegCM4动力降尺度集合预估[J].地学前缘, 29(5): 410-419.DOI: 10.13745/j.esf.sf.2021.9.61.Zhou B T , |
null | |
null | 周天军, 张文霞, 陈晓龙, 等, 2020.青藏高原气温和降水近期、 中期与长期变化的预估及其不确定性来源[J].气象科学, 40(5): 697-710.DOI: 10.3969/2020jms.0076.Zhou T J , |
null | |
null | 赵梦霞, 苏布达, 姜彤, 等, 2021.CM 1P6模式对黄河上游降水的模拟及预估[J].高原气象, 40(3): 547-558.DOI: 10.7522/j.issn.1000-0534.2020.00066.Zhao M X , |
null |
/
〈 |
|
〉 |