收稿日期: 2023-09-30
修回日期: 2024-01-11
网络出版日期: 2024-01-11
基金资助
国家自然科学基金重点项目(42030501); 国家自然科学基金青年科学基金项目(42101022); 甘肃省水利重点科研计划项目(22GSLK057)
Spatiotemporal Dynamics and Temporal Stability of Soil Moisture on Grassland Slopes in Qilian Mountains
Received date: 2023-09-30
Revised date: 2024-01-11
Online published: 2024-01-11
土壤水分作为连接地表与大气水热交换的关键水文变量, 影响陆-气水热交换和碳循环过程。但由于高寒山区土壤水分监测困难, 相关研究存在一定困难。而时间稳定性研究能够通过选择代表性点位从而降低土壤水分获取难度。本研究选取祁连山区石羊河流域上帐房沟草地坡面, 组建高密度、 高时间分辨率土壤水分监测网, 探讨高寒山区坡面尺度土壤水分时空变化及时间稳定性。研究结果表明: (1)表层土壤水分(10 cm, 15.90%)显著高于深层(50 cm, 11.78%), 其时间变异性(Cv T=19.46%)也强于深层(Cv T=10.67%), 但空间变异性(CvS =20.05%)弱于深层(CvS =27.06%)。(2)表层时间稳定性指数(Index of Temporal Stability, ITS)(0.24)强于深层(0.34), 表层和深层分别通过3个或5个土壤水分监测点即可代表坡面表层土壤水分(决定系数R 2>0.90)。(3)坡位和土壤水文属性对时间稳定性的作用效果显著: 时间稳定性点位更容易出现在坡下容重较大、 形状参数n较小的位置。研究结果有助于更好理解高寒山区坡面土壤水分时空变异规律、 时间稳定性特征及其控制作用。
刘源 , 田杰 , 王水献 . 祁连山草地坡面土壤水时空动态及时间稳定性[J]. 高原气象, 2024 , 43(5) : 1249 -1258 . DOI: 10.7522/j.issn.1000-0534.2024.00001
Soil moisture, as a key hydrological variable connecting the surface and atmospheric water and heat exchange, affects the land-air water and heat exchange and carbon cycle process.However, due to the difficulty in monitoring soil moisture in alpine mountain areas, there are some difficulties in related research.The study of time stability can reduce the difficulty of soil moisture acquisition by selecting representative points.In this study, the slope of Shangzhangfanggou grassland in Shiyang River basin of Qilian Mountain was selected to set up a high-density and high-time resolution soil moisture monitoring network to explore the temporal and spatial variation and temporal stability of soil moisture on the slope scale in alpine mountainous areas.The research results show that: (1) The surface soil moisture (10 cm, 15.90%) is significantly higher than that in the deep layer (50 cm, 11.78%), and its temporal variability (Cv T=19.46%) is also stronger than that in the deep layer (Cv T=10.67%), but its spatial variability (CvS =20.05%) is weaker than that in the deep layer (CvS =27.06%).(2) The time stability Index of Temporal Stability (0.24) is stronger than that of the deep layer (0.34), and the surface layer and the deep layer can represent the surface soil moisture of the slope through 3 or 5 soil moisture monitoring points respectively (R 2> 0.90).(3) Slope position and soil hydrological properties have obvious influence on time stability, and the time stability point is more likely to appear at the position with larger bulk density and smaller shape parameter n under the slope.The research results are helpful to better understand the temporal and spatial variation law, temporal stability characteristics and control function of soil moisture on slope in alpine mountain areas.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 程文举, 席海洋, 司建华, 等, 2022.内陆河流域浅山区土壤水热时空动态及其对气象因子的响应[J].高原气象, 41(6): 1435-1445.DOI: 10.7522/j.issn.1000-0534.2021.00089.Cheng W J , |
null | |
null | 丁旭, 赖欣, 范广洲, 2022.青藏高原春季土壤湿度异常与我国夏季降水的联系[J].高原气象, 41(1): 24-34.DOI: 10.7522/j.issn.1000-0534.2020.00094.Ding X , |
null | |
null | 符晴, 阳坤, 郑东海, 等, 2022.青藏高原中部土壤有机质含量对不同深度土壤温湿度的影响研究[J].高原气象, 41(5): 1097-1108.DOI: 10.7522/j.issn.1000-0534.2021.00039.Fu Q , |
null | |
null | 姜泓旭, 2020.秦巴山区土壤物理性质空间变异性研究[D].杨凌: 西北农林科技大学.DOI: 10.27409/d.cnki.gxbnu.2020. 001150. Jiang H X, 2020.Study on spatial variability of soil physical properties in Qinba mountain area[D].Yangling: Northwest A&F University.DOI: 10.27409/d.cnki.gxbnu.2020. 001150 . |
null | 敬文茂, 任小凤, 赵维俊, 2022.1965-2018年祁连山北麓及其附近地区气温与降水变化的时空格局[J].高原气象, 41(4): 876-886.DOI: 10.7522/ j.issn.1000-0534.2021.00075.Jing W M , |
null | |
null | 李阔辰, 2023.线性回归模型中的异方差检验与估计方法研究[D].太原: 山西财经大学.DOI: 10.27283/d.cnki.gsxcc.2023. 001619.Li K C, 2023.A study of heteroscedasticity test and estimation method in linear regression model[D].Taiyuan: Shanxi University of Finance & Economics.DOI: 10.27283/d.cnki.gsxcc.2023.001619 . |
null | 蔺鹏飞, 朱喜, 何志斌, 等, 2018.土壤水分时间稳定性研究进展[J].生态学报, 38(10): 3403-3413.DOI: 10.5846/stxb201704070598. Lin P F , |
null | |
null | 刘维成, 张强, 刘新伟, 2021.陆-气相互作用对大气对流活动影响研究进展和展望[J].高原气象, 40(6): 1278-1293.DOI: 10.7522/j.issn.1000-0534.2021.zk0019.Liu W C , |
null | |
null | 罗晓玲, 丁思聪, 杨梅, 等, 2022.气候变化对石羊河流域生态环境的影响分析[J].沙漠与绿洲气象, 16(4): 49-56.DOI: 10.12057/j.issn.1002-0799.2022.04.007.Luo X L , |
null | |
null | 田杰, 张宝庆, 王学锦, 等, 2023.青藏高原东北部高寒山区土壤水文属性数据和土壤水定位观测网[J].中国科学(地球科学), 53(8): 1775-1794.DOI: 10.1360/N072022-0336.Tian J , |
null | |
null | 魏玲娜, 欧阳如琳, 谢永玉, 等, 2022.八宝河流域土壤水时间稳定性及其下垫面控制因素分析[J].中国农村水利水电(1): 50-58.DOI: 10.3969/j.issn.1007-2284.2022.01.009.Wei L N , |
null | |
null | 祝景彬, 张法伟, 李红琴, 等, 2021.祁连山南麓高寒草甸2002~2016年生长季CO2通量对气温日较差的响应[J].科学通报, 66: 85-95.DOI: 10.1360/TB-2020-0896.Zhu J B , |
null |
/
〈 |
|
〉 |