祁连山草地坡面土壤水时空动态及时间稳定性

  • 刘源 ,
  • 田杰 ,
  • 王水献
展开
  • 1. 兰州大学 资源环境学院,甘肃 兰州 730000
    2. 兰州大学资源环境学院西部环境教育部重点实验室,旱区流域科学与水资源研究中心,甘肃 兰州 730000

刘源(1998 -), 男, 山东东营人, 硕士研究生, 主要从事寒区土壤水文方面的研究. E-mail:

收稿日期: 2023-09-30

  修回日期: 2024-01-11

  网络出版日期: 2024-01-11

基金资助

国家自然科学基金重点项目(42030501); 国家自然科学基金青年科学基金项目(42101022); 甘肃省水利重点科研计划项目(22GSLK057)

Spatiotemporal Dynamics and Temporal Stability of Soil Moisture on Grassland Slopes in Qilian Mountains

  • Yuan LIU ,
  • Jie TIAN ,
  • Shuixian WANG
Expand
  • 1. College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,Gansu,China
    2. Center for Dryland Water Resources Research and Watershed Science,Ministry of Education Key Laboratory of West China’s Environmental System,College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,Gansu,China

Received date: 2023-09-30

  Revised date: 2024-01-11

  Online published: 2024-01-11

摘要

土壤水分作为连接地表与大气水热交换的关键水文变量, 影响陆-气水热交换和碳循环过程。但由于高寒山区土壤水分监测困难, 相关研究存在一定困难。而时间稳定性研究能够通过选择代表性点位从而降低土壤水分获取难度。本研究选取祁连山区石羊河流域上帐房沟草地坡面, 组建高密度、 高时间分辨率土壤水分监测网, 探讨高寒山区坡面尺度土壤水分时空变化及时间稳定性。研究结果表明: (1)表层土壤水分(10 cm, 15.90%)显著高于深层(50 cm, 11.78%), 其时间变异性(Cv T=19.46%)也强于深层(Cv T=10.67%), 但空间变异性(CvS =20.05%)弱于深层(CvS =27.06%)。(2)表层时间稳定性指数(Index of Temporal Stability, ITS)(0.24)强于深层(0.34), 表层和深层分别通过3个或5个土壤水分监测点即可代表坡面表层土壤水分(决定系数R 2>0.90)。(3)坡位和土壤水文属性对时间稳定性的作用效果显著: 时间稳定性点位更容易出现在坡下容重较大、 形状参数n较小的位置。研究结果有助于更好理解高寒山区坡面土壤水分时空变异规律、 时间稳定性特征及其控制作用。

本文引用格式

刘源 , 田杰 , 王水献 . 祁连山草地坡面土壤水时空动态及时间稳定性[J]. 高原气象, 2024 , 43(5) : 1249 -1258 . DOI: 10.7522/j.issn.1000-0534.2024.00001

Abstract

Soil moisture, as a key hydrological variable connecting the surface and atmospheric water and heat exchange, affects the land-air water and heat exchange and carbon cycle process.However, due to the difficulty in monitoring soil moisture in alpine mountain areas, there are some difficulties in related research.The study of time stability can reduce the difficulty of soil moisture acquisition by selecting representative points.In this study, the slope of Shangzhangfanggou grassland in Shiyang River basin of Qilian Mountain was selected to set up a high-density and high-time resolution soil moisture monitoring network to explore the temporal and spatial variation and temporal stability of soil moisture on the slope scale in alpine mountainous areas.The research results show that: (1) The surface soil moisture (10 cm, 15.90%) is significantly higher than that in the deep layer (50 cm, 11.78%), and its temporal variability (Cv T=19.46%) is also stronger than that in the deep layer (Cv T=10.67%), but its spatial variability (CvS =20.05%) is weaker than that in the deep layer (CvS =27.06%).(2) The time stability Index of Temporal Stability (0.24) is stronger than that of the deep layer (0.34), and the surface layer and the deep layer can represent the surface soil moisture of the slope through 3 or 5 soil moisture monitoring points respectively (R 2> 0.90).(3) Slope position and soil hydrological properties have obvious influence on time stability, and the time stability point is more likely to appear at the position with larger bulk density and smaller shape parameter n under the slope.The research results are helpful to better understand the temporal and spatial variation law, temporal stability characteristics and control function of soil moisture on slope in alpine mountain areas.

参考文献

null
Bai Y S Liu M X Yi J, et al, 2021.Temporal stability analysis of soil moisture along a coniferous forest hillslope with subtropical monsoon climate in southwest China[J].Journal of Mountain Science18(11): 2900-2914.DOI: 10.1007/s11629-021-6679-5 .
null
Duan L X Huang M B Li Z W, et al, 2017.Estimation of spatial mean soil water storage using temporal stability at the hillslope scale in black locust (Robinia pseudoacacia) stands[J].Catena, 156: 51-61.DOI: 10.1016/j.catena.2017.03.023 .
null
Gao L Peng X H Biswas A2019.Temporal instability of soil moisture at a hillslope scale under subtropical hydroclimatic conditions[J].Catena, 187: 104362.DOI: 10.1016/j.catena.2019.104362 .
null
Grayson R B Western A W1998.Towards areal estimation of soil water content from point measurements: time and space stability of mean response[J].Journal of Hydrology207(1/2): 68-82.DOI: 10.1016/S0022-1694(98)00096-1 .
null
He M N Wang Y Q Wang L, et al, 2020.Spatio‐temporal variability of multi‐layer soil water at a hillslope scale in the critical zone of the Chinese Loess Plateau[J].Hydrological Processes34(23): 4473-4486.DOI: 10.1002/hyp.13888 .
null
He Z B Zhao M M Zhu X, et al, 2018.Temporal stability of soil water storage in multiple soil layers in high‐elevation forests[J].Journal of Hydrology, 569: 532-545.DOI: 10.1016/j.jhydrol. 2018.12.024 .
null
Hu W Shao M A Han F P, et al, 2010.Watershed scale temporal stability of soil water content[J].Geoderma158(3).DOI: 10.1016/j.geoderma.2010.04.030 .
null
Jacobs J M Mohanty B P Hsu E C, et al, 2004.SMEX02: Field scale variability, time stability and similarity of soil moisture[J].Remote Sensing of Environment92(4): 436-446.DOI: 10. 1016/j.rse.2004.02.017 .
null
Joshi C Mohanty B P Jacobs J M, et al, 2011.Spatiotemporal analyses of soil moisture from point to footprint scale in two different hydroclimatic regions[J].Water Resources Research47(1): 1-20.DOI: 10.1029/2009WR009002 .
null
Lai X M Zhou Z Zhu Q, et al, 2018.Identifying representative sites to simultaneously predict hillslope surface and subsurface mean soil water contents[J].Catena, 167.DOI: 10.1016/j.catena. 2018.05.016 .
null
Li X Z Shao M A Jia X X, et al, 2016.Profile distribution of soil-water content and its temporal stability along a 1340‐m long transect on the Loess Plateau, China[J].Catena, 137: 77-86.DOI: 10.1016/j.catena.2015.09.005 .
null
Liu H W Zhang J Y Liao A M, et al, 2022.Estimation of variability in soil water content in a forested critical‐zone experimental catchment in Eastern China[J].Journal of Contaminant Hydrology248(3/4): 104022.DOI: 10.1016/j.jconhyd.2022.104022 .
null
Rosenbaum U Bogena H R Herbst M, et al, 2012.Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale[J].Water Resources Research48(10): 3472-3476.DOI: 10.1029/2011WR011518 .
null
She D L Liu D D Liu Y Y, et al, 2014.Profile characteristics of temporal stability of soil water storage in two land uses[J].Arabian Journal of Geosciences7(1): 21-34.DOI: 10.1007/s12517-013-0838-0 .
null
Spearman C1987.The proof and measurement of association between two things[J].The American Journal of Psychology, 100(3/4), 441-471.DOI: 10.1093/ije/dyq191 .
null
Tian J Han Z B Bogena H R, et al, 2020.Estimation of subsurface soil moisture from surface soil moisture in cold mountainous areas[J].Hydrology and Earth System Sciences24(9): 4659-4674.DOI: 10.5194/hess-2019-603 .
null
Vachaud G A Silans A Balabanis P, et al, 1985.Temporal stability of spatially measured soil water probability density function[J].Soil Science Society of America Journal49(4): 822-828.DOI: 10.2136/sssaj1985.03615995004900040006x .
null
Wang S Chen H D Fu Z Y, et al, 2016.Temporal stability analysis of surface soil water content on two karst hillslopes in southwest China[J].Environmental Science and Pollution Research International23(24): 25267-25279.DOI: 10.1007/s11356-016-7686-x .
null
Wilding L P1985.Spatial variability: its documentation, accommodation and implication to soil surveys[A].In: Nielsen D R, Bouma J(Eds.).Soil Spatial Variability[M].Wageningen: Pudoc Wageningen, 166-194.
null
Yang J J He Z B Du J, et al, 2017.Soil water variability as a function of precipitation, temperature, and vegetation: a case study in the semiarid mountain region of China[J].Environmental Earth Sciences76 (5): 1-13.DOI: 10.1007/s12665-017-6521-0 .
null
Zhu X He Z B Du J, et al, 2020.Soil moisture temporal stability and spatio‐temporal variability about a typical subalpine ecosystem in northwestern China[J].Hydrological Processes34 (11): 2401-2417.DOI: 10.1002/hyp.13737 .
null
程文举, 席海洋, 司建华, 等, 2022.内陆河流域浅山区土壤水热时空动态及其对气象因子的响应[J].高原气象41(6): 1435-1445.DOI: 10.7522/j.issn.1000-0534.2021.00089.Cheng W J
null
Xi H Y Si J H, et al, 2022.Temporal and spatial dynamic change of soil water‐heat and its response to meteorological factors in an inland river basin in low coteau area[J].Plateau Meteorology41(6): 1435-1445.DOI: 10.7522/j.issn.1000-0534.2021.00089 .
null
丁旭, 赖欣, 范广洲, 2022.青藏高原春季土壤湿度异常与我国夏季降水的联系[J].高原气象41(1): 24-34.DOI: 10.7522/j.issn.1000-0534.2020.00094.Ding X
null
Lai X Fan G Z2022.Impacts of spring soil moisture anomalies in Qinghai‐Xizang Plateau on the summer precipitation variability in China[J].Plateau Meteorology41(1): 24-34.DOI: 10.7522/j.issn.1000-0534.2020.00094 .
null
符晴, 阳坤, 郑东海, 等, 2022.青藏高原中部土壤有机质含量对不同深度土壤温湿度的影响研究[J].高原气象41(5): 1097-1108.DOI: 10.7522/j.issn.1000-0534.2021.00039.Fu Q
null
Yang K Zheng D H, et al, 2022.Impact of soil organic matter content on soil moisture and temperature at different depths in the central Qinghai‐Xizang Plateau[J].Plateau Meteorology41(5): 1097-1108.DOI: 10.7522/j.issn.1000-0534.2021.00039 .
null
姜泓旭, 2020.秦巴山区土壤物理性质空间变异性研究[D].杨凌: 西北农林科技大学.DOI: 10.27409/d.cnki.gxbnu.2020. 001150. Jiang H X, 2020.Study on spatial variability of soil physical properties in Qinba mountain area[D].Yangling: Northwest A&F University.DOI: 10.27409/d.cnki.gxbnu.2020. 001150 .
null
敬文茂, 任小凤, 赵维俊, 2022.1965-2018年祁连山北麓及其附近地区气温与降水变化的时空格局[J].高原气象41(4): 876-886.DOI: 10.7522/ j.issn.1000-0534.2021.00075.Jing W M
null
Ren X F Zhao W J2022.Spatio‐temporal pattern variations of temperature and precipitation in northern parts of the Qilian Mountains and the nearby regions from 1965 to 2018[J].Plateau Meteorology41(4): 876-886.DOI: 10.7522/j.issn.1000-0534.2021.00075 .
null
李阔辰, 2023.线性回归模型中的异方差检验与估计方法研究[D].太原: 山西财经大学.DOI: 10.27283/d.cnki.gsxcc.2023. 001619.Li K C, 2023.A study of heteroscedasticity test and estimation method in linear regression model[D].Taiyuan: Shanxi University of Finance & Economics.DOI: 10.27283/d.cnki.gsxcc.2023.001619 .
null
蔺鹏飞, 朱喜, 何志斌, 等, 2018.土壤水分时间稳定性研究进展[J].生态学报38(10): 3403-3413.DOI: 10.5846/stxb201704070598. Lin P F
null
Zhu X He Z B, et al, 2018.Research progress on soil moisture temporal stability[J].Acta Ecologica Sinica38( 10): 3403-3413.DOI: 10.5846/stxb201704070598 .
null
刘维成, 张强, 刘新伟, 2021.陆-气相互作用对大气对流活动影响研究进展和展望[J].高原气象40(6): 1278-1293.DOI: 10.7522/j.issn.1000-0534.2021.zk0019.Liu W C
null
Zhang Q Liu X W2021.The impact of land-atmosphere interaction on the initiation and development of convective activities: a review[J].Plateau Meteorology40(6): 1278-1293.DOI: 10.7522/j.issn.1000-0534.2021.zk0019 .
null
罗晓玲, 丁思聪, 杨梅, 等, 2022.气候变化对石羊河流域生态环境的影响分析[J].沙漠与绿洲气象16(4): 49-56.DOI: 10.12057/j.issn.1002-0799.2022.04.007.Luo X L
null
Ding S C Yang M, et al, 2022.Impact of climate change on the ecological environment of the Shiyang River Basin[J].Desert and Oasis Meteorology16(4): 49-56.DOI: 10.12057/j.issn.1002-0799.2022.04.007 .
null
田杰, 张宝庆, 王学锦, 等, 2023.青藏高原东北部高寒山区土壤水文属性数据和土壤水定位观测网[J].中国科学(地球科学)53(8): 1775-1794.DOI: 10.1360/N072022-0336.Tian J
null
Zhang B Q Wang X J He C S, et al, 2023.In situ observations of soil hydraulic properties and soil moisture in a high, cold mountainous area of the northeastern Qinghai‐Tibet Plateau[J].Science China Earth Sciences66(8): 1757-1775.DOI: 10.1360/N072022-0336 .
null
魏玲娜, 欧阳如琳, 谢永玉, 等, 2022.八宝河流域土壤水时间稳定性及其下垫面控制因素分析[J].中国农村水利水电(1): 50-58.DOI: 10.3969/j.issn.1007-2284.2022.01.009.Wei L N
null
Ouyang R L Xie Y Y, et al, 2022.An analysis of soil moisture temporal stability and its controlling factors of underlying surface in babaohe watershed[J].China Rural Water and Hydropower (1): 50-58.DOI: 10.3969/j.issn.1007-2284.2022.01.009 .
null
祝景彬, 张法伟, 李红琴, 等, 2021.祁连山南麓高寒草甸2002~2016年生长季CO2通量对气温日较差的响应[J].科学通报, 66: 85-95.DOI: 10.1360/TB-2020-0896.Zhu J B
null
Zhang F W Li H Q, et al, 2021.The response of CO2 fluxes to the amplitude of diurnal temperature in alpine meadow during growing season from 2002 to 2016 at the southern foot of Qilian Mountains [J].Chinese Science Bulletin, 66: 85-95.DOI: 10.1360/TB-2020-0896 .
文章导航

/