收稿日期: 2023-09-26
修回日期: 2024-01-29
网络出版日期: 2024-01-29
基金资助
第二次青藏高原综合科学考察研究项目(2019QZKK0105); 中国气象科学研究院科技发展基金项目(2023KJ027)
On the Causes of Decreased Regional Extreme Wind Frequency over the Qinghai-Xizang Plateau during the Spring Season
Received date: 2023-09-26
Revised date: 2024-01-29
Online published: 2024-01-29
极端大风是一种重要的气象灾害, 同时亦是一种重要的气候资源。作为“世界屋脊”的青藏高原(Qinghai-Xizang Plateau, QXP)区域是全球和区域气候变化的敏感区, 其极端大风事件及其气候变化背景下变化特征与机理尚未完全清楚, 尤其在川藏铁路建设背景下, 加深高原区域极端大风事件的科学认知可为铁路建设和运营提供科学支撑和参考。为探讨高原区域性极端大风长期变化特征及其可能原因, 利用地面观测最大风速日值数据, 定义了青藏高原区域性极端大风事件, 在此基础上, 采用趋势分析、 EOF分析、 合成分析等多元统计方法分析了1982 -2021年高原中东部区域性极端大风事件的时空分布和变化特征、 发生的环流条件及其频次减少的可能原因。分析结果表明: (1)自20世纪80年代以来, 青藏高原中东部区域性极端大风事件呈显著下降趋势, 以95和99百分位定义的区域性极端大风日数每10年分别下降44天和11.6天, 且变化主要表现为空间一致型, 主要集中在高原东北部。(2)区域性极端大风发生期间, 中高纬位势高度呈“西高东低”, 低纬地区呈“西低东高”的分布形势, 主要特征表现为蒙古-西伯利亚高压正异常, 蒙古地区气旋式环流异常, 高原东北部西风异常以及蒙古地区地表温度负异常。(3)全球变化背景下, 春季西伯利亚高压强度减弱、 上一个冬季东亚大槽强度加强致使高原南北两侧气压梯度减小、 西风急流减弱导致动量下传减弱并且伴随着气旋性环流异常减弱, 以及亚洲地表温度非均匀性上升使得南北温度梯度变小。这些大尺度环流和局地热力因子的协同影响可能是高原中东部区域性极端大风事件发生频次减少的重要原因。
付文卓 , 陈斌 , 徐祥德 . 青藏高原春季区域性极端大风频次下降成因[J]. 高原气象, 2024 , 43(5) : 1087 -1101 . DOI: 10.7522/j.issn.1000-0534.2024.00010
Extreme wind events (EWEs) not only are a kind of meteorological disaster, but also serve as an important natural resource.The Qinghai-Xizang Plateau (QXP), well known as the "roof of the world", is vulnerable to global and regional climate change.However, the characteristics and mechanism of variability of extreme wind events over this region and associated mechanisms remain elusive.Under the background of global change, Chinese Sichuan-Tibetan Railway construction, the exploration on changes in the EWEs could deepen our scientific understanding the regional climate.In order to explore the spatial-temporal distribution characteristics of regional extreme wind events (REWs) over the central and eastern QXP for the period of 1982 -2021, daily data of maximum wind speed are utilized to define REWs.Further, with the aid of thermal - thermodynamic diagnosis and the multiple statistical methods, such as trend analysis, EOF and composite analysis, we explore the potential causes leading to the decreased frequency of RWEs.The results show that: (1) The REWs over the QXP significantly decreased since 1980, varied consistently throughout the QXP and occurred mostly in the northeastern QXP.The REWs as defined in the 95th and 99th percentiles decline with the rate of 44d/10a and 11.6d/10a.(2) During periods of REWs, the circulation pattern is "high in the west and low in the east" in the middle and high latitudes and "low in the west and high in the east" in the low latitudes.The main characteristics are as follows: the abnormal positive geopotopic in Mongolia-Siberia, the abnormal cyclonic circulation in Mongolia, the abnormal westerly wind in the northeast of the plateau, and the abnormal negative surface temperature in Mongolia.(3) In the context of global change, the weakening of the Siberian high in spring and the strengthening of the East Asian trough in winter leads to decreasing pressure gradient between the north and south sides of the QXP, the weakening of the westerly jet stream leads to decreasing momentum downdraft, and the rise of non-uniform surface temperature in Asia leads to the decreasing temperature gradient between the north and south sides of the QXP.At the same time, the abnormal cyclonic circulation weakened in Mongolia.It may be resulted from the co-influence of these large-scale circulation and local thermal factors that reduce the frequency of regional extreme wind events in the central and eastern parts of the QXP.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 敖雪, 翟晴飞, 崔妍, 等, 2018.1971-2015年辽宁省海岸带大风时空分布特征及成因分析[J].气象与环境学报, 34(5): 108-118.DOI: 10.3969/j.issn.1673-503X.2018.05.014.Ao X , |
null | |
null | 白虎志, 董安祥, 李栋梁, 等, 2005.青藏高原及青藏铁路沿线大风沙尘日数时空特征[J].高原气象, 24(3): 311-315. |
null | |
null | 丁一汇, 李霄, 李巧萍, 2020.气候变暖背景下中国地面风速变化研究进展[J].应用气象学报, 31(1): 1-12. |
null | |
null | 贺圣平, 王会军, 2012.东亚冬季风综合指数及其表达的东亚冬季风年际变化特征[J].大气科学, 36(3): 523-538.DOI: 10.3878/j.issn.1006-9895.2011.11083.He S P , |
null | |
null | 黄小梅, 管兆勇, 戴竹君, 等, 2013.冬季东亚大槽强度年际变化及其与中国气候联系的再分析[J].气象学报, (3): 416-428.DOI: 10.11676/qxxb2013.042.Huang X M , |
null | |
null | 雷润芝, 余晔, 周国兵, 等, 2023.1984-2020年青藏高原感热通量长期变化趋势分析[J].高原气象, 42(4): 833-847.DOI: 10.7522/j.issn.1000-0534.2023.00032.Lei R Z , |
null | |
null | 罗红羽, 于海鹏, 胡泽勇, 等, 2023.青藏高原热源对我国旱区气候异常影响研究进展[J].高原气象, 42(2): 257-271.DOI: 10.7522/j.issn.1000-0534.2022.00070.Luo H Y , |
null | |
null | 彭玉麟, 简茂球, 2012.亚洲冬季大气动能的时空演变特征及其与中国冬季降水和温度的关系[J].气候与环境研究, 17(4): 457-466.DOI: 10.3878/j.issn.1006-9585.2011.10038.Peng Y L , |
null | |
null | 秦豪君, 杨晓军, 马莉, 等, 2022.2000-2020年中国西北地区区域性沙尘暴特征及成因[J].中国沙漠, 42(6): 53-64.DOI: 10.7522/j.issn.1000-694X.2022.00042.Qin H J , |
null | |
null | 任国玉, 郭军, 徐铭志, 等, 2005.近50 年中国地面气候变化基本特征[J].气象学报, 63(6): 942-956.DOI: 10.11676/qxxb2005. 090.Ren G Y , |
null | |
null | 唐信英, 宋云帆, 王鸽, 等, 2022.1970-2020年青藏高原近地面风速时空变化特征[J].应用与环境生物学报, 28(4): 844-850.DOI: 10.19675/j.cnki.1006-687x.2022.02038.Tang X Y , |
null | |
null | 王黉, 李英, 吴哲红, 等, 2019.我国大风机理研究和预报技术进展[J].气象科技, 47(4): 600-607. |
null | |
null | 王鹏祥, 杨金虎, 张强, 等, 2007.近半个世纪来中国西北地面气候变化基本特征[J].地球科学进展, 148(6): 649-656.DOI: 10.11867/j.issn.1001-8166.2007.06.0648.Wang P X , |
null | |
null | 王蕊, 李栋梁, 王慧, 等, 2023.青藏高原与中国西北干旱区地面感热季节增强时间的差异及相互关系[J].高原气象, 42(2): 283-293.DOI: 10.7522/j.issn.1000-0534.2022.00045.Wang R , |
null | |
null | 吴国雄, 何编, 刘屹岷, 等, 2016.青藏高原和亚洲夏季风动力学研究的新进展[J].大气科学, 40(1): 22-32.DOI: 10.3878/j.issn.1006-9895.1504.15129.Wu G X , |
null | |
null | 吴佳, 吴婕, 闫宇平, 2022.1961-2020年青藏高原地表风速变化及动力降尺度模拟评估[J].高原气象, 41(4): 963-976.DOI: 10.7522/j.issn.1000-0534.2022.00065.Wu J , |
null | |
null | 徐祥德, 陈联寿, 2006.青藏高原大气科学试验研究进展[J].应用气象学报, 17(6): 756-772. |
null | |
null | 杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象, 41(1): 1-10.DOI: 0.7522/j.issn.1000-0534.2021.00117.Yang Y X , |
null | |
null | 姚慧茹, 李栋梁, 2019.青藏高原风季大风集中期、 集中度及环流特征[J].中国沙漠, 39(2): 122-133.DOI: 10.7522/j.issn.1000-694X.2018.00054.Yao H R , |
null | |
null | 姚檀栋, 陈发虎, 崔鹏, 等, 2017.从青藏高原到第三极和泛第三极[J].中国科学院院刊, 32(9): 924-931.DOI: 10.16418/j.issn.1000-3045.2017.09.001.Yao T D , |
null | |
null | 姚正毅, 王涛, 周俐, 等, 2006.近40 年阿拉善高原大风天气时空分布特征[J].干旱区地理, 29(2): 207-212. |
null | |
null | 周波涛, 钱进, 2021.IPCC AR6 报告解读: 极端天气气候事件变化 [J].气候变化研究进展, 17(6): 713-718.DOI: 10.12006/j.issn.1673-1719.2021.167.Zhou B T , |
null | |
null | 朱艳峰, 2008.一个适用于描述中国大陆冬季气温变化的东亚冬季风指数[J].气象学报, 66(5): 781-788.DOI: 10.11676/qxxb2008.071.Zhu Y F , 2008.An index of East Asian winter monsoon applied to description the Chinese mainland winter temperature changes[J].Acta Meteorologica Sinica, 66(5): 781-788.DOI: 10.11676/qxxb2008.071 . |
/
〈 |
|
〉 |