四川盆地典型“西南型”盆地涡特征研究
收稿日期: 2023-10-25
修回日期: 2023-12-15
网络出版日期: 2023-12-15
基金资助
国家自然科学基金重点项目(91937301)
Research on the Characteristics of Typical “Southwest Type” Basin Vortex in the Sichuan Basin
Received date: 2023-10-25
Revised date: 2023-12-15
Online published: 2023-12-15
盆地涡是西南涡的一种类型, 是指在700 hPa等压面上生成于四川盆地, 连续有两次闭合等高线的低压或3个站风向为气旋性环流的低涡。它是造成四川盆地降水的主要系统, 而“西南型”盆地涡是盆地涡中发生频率最高、 强度较强的一类。本文利用ERA5(0.25°×0.25°)逐小时再分析资料、 GPM卫星降水资料以及《西南低涡年鉴》等, 探讨了2020年6月26 -28日发生于四川盆地的一次典型“西南型”盆地涡的特征和发生发展机制。结果表明: 此次盆地涡生成于四川盆地西南部, 随后向东北方向移动, 到达四川东北部后转向东行, 进入重庆后消亡, 生命史共计48 h。该盆地涡的形成发展与其位于200 hPa南亚高压东北侧及高空急流入口区右侧的辐散区, 以及500 hPa短波槽前正涡度平流造成低层减压密切相关。700 hPa上四川盆地西南部位于低空急流的左前方, 有利于辐合上升运动的发展和低涡形成。700 hPa盆地涡东北方向的锋生大值区、 低空急流的加强北上以及500 hPa高空槽前西南气流的引导作用, 是低涡向东北方向移动的主要因素。随着200 hPa南亚高压中心东移到江淮上空以及高空急流减弱, 500 hPa短波槽随之东移, 盆地涡位于槽后的负涡度平流区, 垂直方向转为下沉运动, 地面加压, 低涡逐渐减弱消亡。对涡度收支方程各项分析发现, 低空辐合是盆地涡强度增加的主要贡献项, 由低空辐合导致盆地涡正涡度的增加几乎贯穿了低涡整个生成发展阶段。此外高空正位涡大值区的存在、 盆地涡降水的凝结潜热释放等, 也对本次盆地涡的发展和移动起到了重要作用。
张雅馨 , 许东蓓 , 李跃清 , 李祎潮 , 高岚 , 燕若彤 . 四川盆地典型“西南型”盆地涡特征研究[J]. 高原气象, 2024 , 43(4) : 905 -918 . DOI: 10.7522/j.issn.1000-0534.2023.00100
Basin Vortex is a type of Southwest Vortex, which refers to the vortex generated in the Sichuan Basin on the 700 hPa isobaric surface, with two consecutive low pressures with closed Contour line or cyclonic circulation in the wind direction of three stations.It is the main system that causes precipitation in the Sichuan Basin, and the "southwest type" Basin Vortex is the most frequent and strong type of Basin Vortex.This article utilizes ERA5 (0.25°×0.25°) hourly reanalysis data, GPM satellite precipitation data, and the Southwest Low Eddy Yearbook explored the characteristics and development mechanism of a typical “southwest type” Basin Vortex that occurred in the Sichuan Basin from June 26 to 28, 2020.The results indicate that the Basin Vortex was generated in the southwestern part of the Sichuan Basin, then moved towards the northeast direction, reached the northeastern part of Sichuan, turned eastward, and disappeared after entering Chongqing, with a total life history of 48 hours.The formation and development of the Basin Vortex are closely related to its divergence zone located on the northeast side of the 200 hPa South Asian High and on the right side of the entrance area of the high-altitude jet stream, as well as the low-level decompression caused by the positive vorticity advection in front of the 500 hPa short wave trough.The southwest part of the Sichuan Basin at 700 hPa is located to the left front of the low-level jet stream, which is conducive to the development of convergent upward motion and the formation of low eddies.The high value area of frontogenesis in the northeast direction of the 700 hPa Basin Vortex, the strengthening of the low-level jet and the guidance of the southwest airflow in front of the 500 hPa high altitude trough are the main factors for the movement of the Basin Vortex towards the northeast direction.As the center of the 200 hPa South Asian High moves eastward over the Yangtze-Huaihe River and the upper level jet weakens, the 500 hPa shortwave trough moves eastward, and the Basin Vortex is located in the negative vorticity advection zone behind the trough.The vertical direction turns into a sinking motion, with surface pressure increasing and the low vortex gradually weakening and disappearing.Analysis of the vorticity budget equation reveals that low-level convergence is the main contributor to the increase in the Basin Vortex intensity, and the increase in positive vorticity of the Basin Vortex caused by low-level convergence almost runs through the entire life cycle of the vortex.In addition, the existence of high-altitude orthonormal vortices and the release of condensation latent heat from the Basin Vortex precipitation also play an important role in the development and movement of the Basin Vortex.
Key words: Basin Vortex; moving features; formation mechanism
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈启智, 黄奕武, 王其伟, 等, 2007.1990-2004年西南低涡活动的统计研究[J].南京大学学报(自然科学版), 43(6): 633-642. |
null | |
null | 陈双, 孙继松, 何立富, 2022.四川盆地不同落区的三次强降水过程多尺度特征分析[J].高原气象, 41(5): 1190-1208.DOI: 10.7522/j.issn.1000-0534.2021.00060.Chen S , |
null | |
null | 陈涛, 张芳华, 端义宏, 2011.广西“6.12”特大暴雨中西南涡与中尺度对流系统发展的相互关系研究[J].气象学报, 69(3): 472-485. |
null | |
null | 陈忠明, 闵文彬, 崔春光, 2004.西南低涡研究的一些新进展[J].高原气象, 23(z1): 1-5. |
null | |
null | 程麟生, 郭英华, 1988.“81.7”四川暴雨期西南涡生成和发展的涡源诊断[J].大气科学, 12(1): 18-26. |
null | |
null | 高守亭, 周玉淑, 2019.近年来中尺度涡动力学研究进展[J].暴雨灾害, 38(5): 431-439. |
null | |
null | 高正旭, 王晓玲, 李维京, 2009.西南低涡的统计特征及其对湖北降水的影响[J].暴雨灾害, 28(4): 302-305+312. |
null | |
null | 何光碧, 2012.西南低涡研究综述[J].气象, 38(2): 155-163. |
null | |
null | 何光碧, 高文良, 屠妮妮, 2009.两次高原低涡东移特征及发展机制动力诊断[J].气象学报, 67(4): 599-612. |
null | |
null | 李超, 李跃清, 蒋兴文, 2015.四川盆地低涡的月际变化及其日降水分布统计特征[J].大气科学, 39(6): 1191-1203. |
null | |
null | 李国平, 2007.青藏高原动力气象学 第2版[M].北京: 气象出版社, 2007.Li G P, 2007.Dynamic meteorology of the Qinghai Tibet Plateau, 2nd edition[M].Beijing: China Meteorological Press, 2007. |
null | 李国平, 陈佳, 2018.西南涡及其暴雨研究新进展[J].暴雨灾害, 37(4): 293-302. |
null | |
null | 李强, 王秀明, 周国兵, 等, 2020.四川盆地西南低涡暴雨过程的短时强降水时空分布特征研究[J].高原气象, 39(5): 960-972.DOI: 10.7522/j.issn.1000-0534.2019.00096.Li Q , |
null | |
null | 李跃清, 2021.西南涡涡源研究的有关新进展[J].高原气象, 40(6): 1394-1406.DOI: 10.7522/j.issn.1000-0534.2021.zk005.Li Y Q , 2021.New advances in the study of southwest vortex sources[J].Plateau Meteorology, 40(6): 1394-1406.DOI: 10.7522/j.issn.1000-0534.2021.zk005 . |
null | 刘冲, 赵平, 2020.1979-2016年四川盆地低涡的气候特征分析[J].气候变化研究进展, 16(2): 203-214. |
null | |
null | 刘金卿, 刘红武, 徐靖宇, 2021.西南涡引发的强对流天气特征[J].高原气象, 40(3): 525-534.DOI: 10.7522/j.issn.1000-0534.2020.00027.Liu J Q , |
null | |
null | 刘英, 王东海, 张中锋, 等, 2012.东北冷涡的结构及其演变特征的个例综合分析[J].气象学报, 70(3): 354-370. |
null | |
null | 卢敬华, 1986.西南低涡概论[M].北京: 气象出版社, 1986. |
null | |
null | 罗清, 郁淑华, 罗磊, 等, 2018.不同涡源西南涡的若干统计特征分析[J].高原山地气象研究, 38(4): 8-15. |
null | |
null | 潘旸, 李建, 宇如聪, 2011.东移西南低涡空间结构的气候学特征[J].气候与环境研究, 16(1): 60-70. |
null | |
null | 任英杰, 雍斌, 鹿德凯, 等, 2019.全球降水计划多卫星降水联合反演IMERG卫星降水产品在中国大陆地区的多尺度精度评估[J].湖泊科学, 31(2): 560-572. |
null | |
null | 寿绍文, 2010.位涡理论及其应用[J].气象, 36(3): 9-18. |
null | |
null | 汤欢, 傅慎明, 孙建华, 等, 2020.一次高原东移MCS与下游西南低涡作用并产生强降水事件的研究[J].大气科学, 44(6): 1275-1290. |
null | |
null | 王晓芳, 廖移山, 闵爱荣, 等, 2007.影响“05.06.25”长江流域暴雨的西南低涡特征[J].高原气象, 26(1): 197-205.DOI: 10.3321/j.issn: 1000-0534.2007.01.023.Wang X F , |
null | |
null | 肖递祥, 郁淑华, 屠妮妮, 2016.高原低涡移出高原后持续活动的典型个例分析[J].高原气象, 35(1): 43-54.DOI: 10.7522/j.issn.1000-0534.2015.00002.Xiao D X , |
null | |
null | 肖贻青, 娄盼星, 李明娟, 等, 2023.西北涡与西南涡共同作用引发秦巴区域大暴雨的成因分析[J].高原气象, 42(1): 98-107.DOI: 10.7522/j.issn.1000-0534.2022.00013.Xiao Y Q , |
null | |
null | 杨克明, 林建, 康志明, 等, 2006.2004年7月黄淮特大暴雨的天气动力学分析[J].高原气象, 25(5): 781-791.YangK M, LinJ, KangZ M, et al, 2006.Weather dynamics analysis of extremely heavy rainstorm over the Yellow River and Huaihe River in July 2004[J].Plateau Meteorology, 25(5): 781-791. |
null | 于玉斌, 姚秀萍, 2000.对华北一次特大台风暴雨过程的位涡诊断分析[J].高原气象, 19(1): 111-120. |
null | |
null | 张元春, 孙建华, 傅慎明, 2012.冬季一次引发华北暴雪的低涡涡度分析[J].高原气象, 31(2): 387-399. |
null | |
null | 中国气象局成都高原气象研究所, 中国气象学会高原气象学委员会, 2020.西南低涡年鉴[M].科学出版社.Chengdu Plateau Meteorological Research Institute of China Meteorological Administration, Plateau Meteorology Committee of China Meteorological Society, 2020.Southwest low vortex yearbook[M].Science Press. |
null | 周春花, 肖递祥, 郁淑华, 2022.持续东北移和在四川盆地停滞的九龙涡结构特征比较[J].高原气象, 41(5): 1220-1231.DOI: 10.7522/j.issn.1000-0534.2021.00044.Zhou C H , |
null | |
null | 朱乾根, 2007.天气学原理和方法 第4版[M].北京: 气象出版社.Zhu Q G, 2007.Principles and methods of weather science, 4th Edition[M].Beijing: China Meteorological. |
null | 宗志平, 陈涛, 徐珺, 等, 2013.2012年初秋四川盆地两次西南涡暴雨过程的对比分析与预报检验[J].气象, 39(5): 567-576. |
null |
/
〈 |
|
〉 |