基于MODIS数据青海湖流域内积雪和湖冰物候变化研究

  • 沈姣姣 ,
  • 沈言龙 ,
  • 欧阳志棋 ,
  • 郭慧 ,
  • 王晓艳
展开
  • 兰州大学资源环境学院,甘肃 兰州 730000

沈姣姣(2000 -), 女, 甘肃兰州人, 硕士研究生, 主要从事积雪遥感研究. E-mail:

收稿日期: 2023-10-23

  修回日期: 2024-02-19

  网络出版日期: 2024-02-19

基金资助

国家自然科学基金项目(42271373); 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室开放基金项目“2001-2018年中国东北地区积雪物候变化及其对气候的响应”

Study on the Phenological Changes of Snow and Lake Ice in Qinghai Lake Basin based on MODIS Data

  • Jiaojiao SHEN ,
  • Yanlong SHEN ,
  • Zhiqi OUYANG ,
  • Hui GUO ,
  • Xiaoyan WANG
Expand
  • College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,Gansu,China

Received date: 2023-10-23

  Revised date: 2024-02-19

  Online published: 2024-02-19

摘要

物候变化对气候响应和生态环境方面的研究具有重要意义。本文基于近20年的MODIS V6积雪产品和反射率产品, 分别获取了青海湖流域的积雪和湖冰物候, 并分析了二者的空间分布特征。在此基础上, 采用Theil-Sen Median和一元线性回归法分析了积雪物候与湖冰物候的变化趋势, 以及低海拔区域内二者的相关关系。结果表明: (1)青海湖湖冰开始冻结日期、 开始消融日期和湖冰存在期分别在321~389 d、 425~464 d和0~174 d。整体上, 开始冻结日期和开始消融日期均呈推迟趋势, 推迟率分别为0.3 d·a-1和0.2 d·a-1; 湖冰存在期则呈缩短趋势, 缩短率为0.6 d·a-1。湖冰物候与经度具有显著相关性, 湖面自东向西, 湖冰开始冻结日期推后、 开始消融日期提前、 湖冰存在期缩短。(2)青海湖流域积雪初日、 积雪终日和积雪日数分别在275~404 d、 353~484 d和3~209 d。其中积雪初日和积雪终日整体上分别呈提前趋势和推迟趋势, 变化率分别为0.8 d·a-1和0.11 d·a-1; 积雪日数呈增长趋势, 增长率为0.6 d·a-1。积雪物候与海拔密切相关, 随着海拔的增加, 积雪初日提前、 积雪终日推迟、 积雪日数增加。(3)冬季负积温和气温是影响湖冰物候的重要因素。冬季负积温和气温升高会导致湖冰开始冻结日期推迟、 湖冰开始消融日期提前、 湖冰存在期缩短。对于积雪物候, 积雪日数与气温之间呈显著的负相关关系, 气温下降, 积雪日数增加。(4)低海拔流域内部分积雪与湖冰物候参数之间存有潜在联系。积雪初日与湖冰开始冻结日期之间具有较为显著的负相关关系, 相关性系数为-0.404。而积雪作为湖面保温层, 积雪日数的增加也会很大程度上减缓湖冰消融速度, 致使湖冰消融日期推迟, 因此二者呈一定正相关关系, 相关性系数为0.349。本研究所揭示的流域内生态系统变化规律, 对当地生态系统具有积极意义, 可以为青海湖流域环境监测提供理论依据和技术支持。

本文引用格式

沈姣姣 , 沈言龙 , 欧阳志棋 , 郭慧 , 王晓艳 . 基于MODIS数据青海湖流域内积雪和湖冰物候变化研究[J]. 高原气象, 2024 , 43(5) : 1177 -1189 . DOI: 10.7522/j.issn.1000-0534.2024.00021

Abstract

Phenological changes are of great significance to the study of climate response and ecological environment.Based on the MODIS V6 snow product and reflectivity product in the past 20 years, the snow and lake ice phenology in the Qinghai Lake Basin were obtained, and the spatial distribution characteristics of the two were analyzed.On this basis, Theil-Sen Median method and linear regression method were used to analyze the variation trend of snow phenology and lake ice phenology, as well as the correlation between them in low altitude areas.The results show that: (1) Freeze-up start, Break-up start and Exist Duration of lake ice in Qinghai Lake are in the range of 321~389 d, 425~464 d and 0~174 d, respectively.On the whole, Freeze-up start and Break-up start of lake ice were delayed, and the delay rates were 0.3 d·a-1 and 0.2 d·a-1, respectively.Exist Duration of lake ice showed a shortening trend, with a shortening rate of 0.6 d·a-1.There is a significant correlation between lake ice phenology and longitude.From east to west, Freeze-up start is postponed, Break-up start is advanced, and Exist Duration of lake ice is shortened.(2) Start of snow cover days, End of snow cover days and Snow cover days in Qinghai Lake Basin are distributed in the range of 275~404 d, 353~484 d and 3~209 d, respectively.Among them, start of snow cover days and End of snow cover days showed an early trend and a delayed trend respectively, and the change rates were 0.8 d·a-1 and 0.11 d·a-1 respectively.Snow cover days showed an increasing trend, with a growth rate of 0.6 d·a-1.Snow phenology is closely related to altitude.With the increase of altitude, start of snow cover days is advanced, End of snow cover days is delayed, and Snow cover days increases.(3) Air temperature and negative accumulated temperature in winter are important factors affecting lake ice phenology.With the increase of temperature and negative accumulated temperature in winter, Freeze-up start will be delayed, Break-up start will be advanced, and Exist Duration of lake ice will be shortened.For snow phenology, there is a significant negative correlation between Snow cover days and the temperature.The temperature decreases and Snow cover days increases.(4) There is a potential relationship between some snow cover and lake ice phenology parameters in low-altitude watersheds.There is a significant negative correlation between the beginning date of snow cover and the beginning date of lake ice freezing, and the correlation coefficient is -0.404.As the lake surface insulation layer, the increase of snow cover days will also greatly slow down the speed of lake ice melting, resulting in the delay of lake ice melting date.Therefore, there is a positive correlation between the two, and the correlation coefficient is 0.349.The change law of ecosystem in the basin revealed by this study is of positive significance to the local ecosystem, and can provide theoretical basis and technical support for the environmental monitoring of Qinghai Lake Basin.

参考文献

null
Barnett T P Adam J C Lettenmaier D P2005.Potential impacts of a warming climate on water availability in snow-dominated regions[J].Nature438(7066): 303-309.DOI: 10.1038/nature04141 .
null
Brown R D Robinson D A2011.Northern Hemisphere spring snow cover variability and change over 1922-2010 including an assessment of uncertainty[J].The Cryosphere5(1): 219-229.DOI: 10.5194/tc-5-219-2011 .
null
Chen S Y Wang X Y Guo H, et al, 2020.Spatial and temporal adaptive gap-filling method producing daily cloud-free NDSI time series[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 2251-2263.DOI: 10.1109/JSTARS.2020.2993037 .
null
Chen X N Liang S L Cao Y F, et al, 2015.Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001-2014[J].Scientific reports5(1): 16820.DOI: 10. 1038/srep16820 .
null
Henneman H E Stefan H G1999.Albedo models for snow and ice on a freshwater lake[J].Cold Regions Science & Technology29(1): 31-48.DOI: 10.1016/S0165-232X(99)00002-6 .
null
Hori M Sugiura K Kobayashi K, et al, 2017.A 38-year (1978-2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors[J].Remote Sensing of Environment, 191: 402-418.DOI: 10.1016/j.rse.2017.01.023 .
null
Ke C Q Tao A Q Jin X2013.Variability in the ice phenology of Nam Co Lake in central Tibet from scanning multichannel microwave radiometer and special sensor microwave/imager: 1978 to 2013[J].Journal of Applied Remote Sensing7(1): 073477-073477.DOI: 10.1117/1.JRS.7.073477 .
null
Lopez L S Hewitt B A Sharma S, et al, 2023.Reaching a breaking point: How is climate change influencing the timing of ice breakup in lakes across the northern hemisphere?[J].Limnology and Oceanography64(6): 2621-2631.DOI: 10.1002/lno.11239 .
null
Peng S S Piao S L Ciais P, et al, 2013.Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades[J].Environmental Research Letters8(1): 014008.DOI: 10.1088/1748-9326/8/1/014008 .
null
Sood V Singh S Taloor A K, et al, 2020.Monitoring and mapping of snow cover variability using topographically derived NDSI model over north Indian Himalayas during the period 2008-19[J].Applied Computing and Geosciences, 8: 100040.DOI: 10.1016/j.acags.2020.100040 .
null
Tang Z G Deng G Hu G J, et al, 2022.Satellite observed spatiotemporal variability of snow cover and snow phenology over high mountain Asia from 2002 to 2021[J].Journal of Hydrology, 613: 128438.DOI: 10.1016/j.jhydrol.2022.128438 .
null
Tarca G Guglielmin M Convey P, et al, 2022.Small-scale spatial-temporal variability in snow cover and relation-ships with vegetation and climate in maritime Antarctica[J].Catena, 208: 105739.DOI: 10.1016/j.catena.2021.105739 .
null
Wang X C Feng L Gibson L, et al, 2021.High-resolution mapping of ice cover changes in over 33, 000 lakes across the north temperate zone[J].Geophysical Research Letters48(18): e2021GL095614.DOI: 10.1029/2021GL095614 .
null
Wang Y T Chen Y Y Li P F, et al, 2022.Effect of snow cover on detecting spring phenology from satellite-derived vegetation indices in alpine grasslands[J].Remote Sensing14(22): 5725.DOI: 10.3390/rs14225725 .
null
Woolway R I Kraemer B M Lenters J D, et al, 2020.Global lake responses to climate change[J].Nature Reviews Earth & Environment, 1(8)388-403.DOI: 10.1038/s43017-020-0067-5 .
null
Xie F Lu P Li Z J, et al, 2022.A floating remote observation system (FROS) for full seasonal lake ice evolution studies[J].Cold Regions Science and Technology, 199: 103557.DOI: 10.1016/j.coldregions.2022.103557 .
null
Xie J Hüsler Fabia Jong R D, et al, 2021.Spring temperature and snow cover climatology drive the advanced springtime phenology (1991-2014) in the European Alps[J].Journal of Geophysical Research Biogeosciences126(3): e2020JG006150.DOI: 10. 1029/2020JG006150 .
null
Zhang B Li X M Li C, et al, 2022.Alpine vegetation responses to snow phenology in the Chinese Tianshan mountainous region[J].Journal of Mountain Science19(5): 1307-1323.DOI: 10.1007/s11629-021-7133-4 .
null
曹晓卫, 2021.乌梁素海湖冰生消过程观测与模拟研究[D].大连: 大连理工大学.Cao X W, 2021.Observation and simulation research on growth and decay processes of ice cover on Lake Wuliangsuhai[D].Dalian: Dalian University of Technology.
null
单帅, 沈润平, 师春香, 等, 2020.中国北部积雪区冬季地表温度和2 m气温再分析数据评估[J].高原气象39(1): 37-47.DOI: 10.7522/j.issn.000-0534.2019.00003.Shan S
null
Shen R P Shi C X, et al, 2020.Evaluation of land surface temperature and 2 m air temperature from five reanalyses datasets across north China in winter[J].Plateau Meteorology39(1): 37-47.DOI: 10.7522/j.issn.1000-0534.2019.00003 .
null
高扬, 郝晓华, 和栋材, 等, 2019.基于不同土地覆盖类型NDSI阈值优化下的青藏高原积雪判别[J].冰川冻土41(5): 1162-1172.DOI: 10.7522/j.issn.1000-0240.2019.1155.Gao Y
null
Hao X H He D C, et al, 2019.Snow cover mapping algorithm in the Tibetan Plateau based on NDSI threshold optimization of different land cover types[J].Journal of Glaciology and Geocryology41(5): 1162-1172.DOI: 10.7522/j.issn.1000-0240.2019.1155 .
null
郝晓华, 赵琴, 纪文政, 等, 2022.1980-2020年AVHRR中国积雪物候数据集[J].中国科学数据(中英文网络版)7(3): 50-59.DOI: 10.11922/11-6035.ncdc.2021.0026.zh.Hao X H
null
Zhao Q Ji W Z, et al, 2022.A dataset of snow cover phenology in China based on AVHRR from 1980 to 2020[J].China Scientific Data7(3): 50-59.DOI: 10.11922/11-6035.ncdc.2021.0026.zh .
null
康世昌, 郭万钦, 钟歆玥, 等, 2020.全球山地冰冻圈变化、 影响与适应[J].气候变化研究进展16(2): 143-152.DOI: 10.12006/j.issn.1673-1719.2019.257.Kang S C
null
Guo W Q Zhong X Y, et al, 2020.Changes in the mountain cryosphere and their impacts and adaptation measures[J].Climate Change Research16(2): 143-152.DOI: 10.12006/j.issn.1673-1719.2019.257 .
null
李广泳, 李小雁, 赵国琴, 等, 2014.青海湖流域草地植被动态变化趋势下的物候时空特征[J].生态学报34(11): 3038-3047.DOI: 10.5846/stxb201211251668.Li G Y
null
Li X Y Zhao G Q, et al, 2014.Characteristics of spatial and temporal phenology under the dynamic variation of grassland in the Qinghai Lake watershed[J].Acta Ecologica Sinica34(11): 3038-3047.DOI: 10.5846/stxb201211251668 .
null
李林, 申红艳, 刘彩红, 等, 2020.青海湖水位波动对气候暖湿化情景的响应及其机理研究[J].气候变化研究进展16(5): 600-608.DOI: 10.12006/j.issn.1673-1719.2019.243.Li L
null
Shen H Y Liu C H, et al, 2020.Response of water level fluctuation to climate warming and wetting scenarios and its mechanism on Qinghai Lake[J].Climate Change Research16 (5): 600-608.DOI: 10.12006/j.issn.1673-1719 .
null
李兴东, 龙笛, 黄琦, 等, 2022.湖冰厚度遥感反演进展与展望[J].遥感学报26(7): 1289-1301.DOI: 10.11834/jrs.20221683.Li X D
null
Long D Huang Q, et al, 2022.Progress and prospects of remote sensing of lake ice thickness[J].National Remote Sensing Bulletin26(7): 1289-1301.DOI: 10.11834/jrs.20221683 .
null
李延, 赵瑞瑜, 陈斌, 2023.青藏高原冬春多源积雪资料年际变化尺度上的适用性分析[J/OL].高原气象: 1-14.[2023-12-25].
null
Zhao R Y Chen B2023.Applicability of multi-source winter-spring snow cover data over the Qinghai-Xizang (Tibetan) Plateau on the scale of interannual variation[J/OL].Plateau Meteorology: 1-14.[2023-12-25].
null
牛瑞佳, 文莉娟, 王梦晓, 等, 2023.积雪和沙尘对冰封期青海湖辐射和温度的影响[J].高原气象42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021.Niu R J
null
Wen L J Wang M X, et al, 2023.Effects of snow and dust on radiation and temperature in Qinghai Lake during ice-covered period[J].Plateau Meteorology42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021 .
null
庞毓雯, 黄雨馨, 巩志, 等, 2020.基于多光谱遥感的湖冰物候监测方法研究进展[J].海洋湖沼通报173(2): 90-99.DOI: 10.13984/j.cnki.cn37-1141.2020.02.011.Pang Y W
null
Huang Y X Gong Z, et al, 2020.Advances in phenological monitoring of lake ice based on multi-spectral remote sensing[J].Transactions of Oceanology and Limnology173(2): 90-99.DOI: 10.13984/j.cnki.cn37-1141.2020.02.011 .
null
祁苗苗, 姚晓军, 刘时银, 等, 2020.1973-2018年青海湖岸线动态变化[J].湖泊科学32(2): 573-586.DOI: CNKI: SUN: FLKX.0.2020-02-026.Qi M M
null
Yao X J Liu S Y, et al, 2020.Dynamic change of Lake Qinghai shoreline from 1973 to 2018[J].Journal of Lake Sciences32(2): 573-586.DOI: CNKI: SUN: FLKX.0.2020-02-026 .
null
秦大河, 周波涛, 效存德, 2014.冰冻圈变化及其对中国气候的影响[J].气象学报72(5): 869-879.DOI: 10.11676/qxxb2014.080.Qin D H
null
Zhou B T Xiao C D2014.Progress in studies of cryospheric changes and their impacts on climate of China[J].Acta Meteorologica Sinica72(5): 869-879.DOI: 10.11676/qxxb2014.080 .
null
邰雪楠, 王宁练, 吴玉伟, 等, 2022.近20 a色林错湖冰物候变化特征及其影响因素[J].湖泊科学34(1): 334-348.DOI: 10.18307/2022.0127.Tai X N
null
Wang N L Wu Y W, et al, 2022.Lake ice phenology variations and influencing factors of Selin Co from 2000 to 2020[J].Journal of Lake Sciences34(1): 334-348.DOI: 10.18307/2022.0127 .
null
汪关信, 张廷军, 杨瑞敏, 等, 2020.从第三极到北极: 湖冰研究进展[J].冰川冻土42(1): 124-139.DOI: 10.7522/j.issn.1000-0240.2020.0008.Wang G X
null
Zhang T J Yang R M, et al, 2020.Lake ice changes in the Third Pole and the Arctic[J].Journal of Glaciology and Geocryology42(1): 124-139.DOI: 10.7522/j.issn.1000-0240.2020.0008 .
null
王琪, 吴成永, 陈克龙, 等, 2019.基于MODIS NPP数据的青海湖流域产草量与载畜量估算研究[J].生态科学38(4): 178-185.DOI: CNKI: SUN: STKX.0.2019-04-024.Wang Q
null
Wu C Y Chen K L, et al, 2019.Estimating grassland yield and carrying capacity in Qinghai Lake Basin based on MODIS NPP data[J].Ecological Science38(4): 178-185.DOI: CNKI: SUN: STKX.0.2019-04-024 .
null
王卫国, 李弘毅, 朱小凡, 等, 2022.1979-2018年青藏高原不同地区积雪季极端降水水汽来源分析[J].高原气象41(6): 1367-1383.DOI: 10.7522/j.issn.1000-0534.2021.00080.Wang W G
null
Li H Y Zhu X F, et al, 2022.The analysis of water vapor sources of extreme precipitation in different subregions of Qinghai-Xizang Plateau during the snow season from 1979 to 2018[J].Plateau Meteorology41(6): 1367-1383.DOI: 10.7522/j.issn.1000-0534.2021.00080 .
null
王迎春, 王蕊, 李胜阳, 等, 2023.西天山某流域积雪变化及其与径流量相关性分析[J].人民黄河45(4): 40-46.DOI: 10.3969/j.issn.1000-1379.2023.04.007.Wang Y C
null
Wang R Li S Y, et al, 2023.Analysis of snow cover change and its correlation with runoff in a basin of West Tianshan Mountains[J].Yellow River45(4): 40-46.DOI: 10.3969/j.issn.1000-1379.2023.04.007 .
null
王智颖, 2017.青藏高原湖泊环境要素的多源遥感监测及其对气候变化响应[D].济南: 山东师范大学.Wang Z Y, 2017.Multi-source remote sensing monitoring of lake environmental factors in Qinghai-Tibet Plateau and its application to Climate change response[D].Jinan: Shangdong Normal University.
null
杨芳芳, 2021.基于多源遥感数据的青藏高原积雪与植被变化关系研究[D].北京: 中国地质大学(北京).DOI: 10.27493/d.cnki.gzdzy.2021.001728.Yang F F, 2021.Study on the relationship between snow and vegetation change in Qinghai-Tibet Plateau based on multi-source remote sensing data[D].Beijing: China University of Geosciences (Beijing).DOI: 10.27493/d.cnki.gzdzy.2021.001728 .
null
杨雅茹, 赵春雷, 李弘毅, 等, 2022.北京冬奥会张家口赛区未来三十年积雪物候数据集[J].中国科学数据(中英文网络版)7(3): 70-83.DOI: 10.11922/11-6035.ncdc.2021.0023.zh.Yang Y R
null
Zhao C L Li H Y, et al, 2022.A dataset of snow cover phenology for the next 30 years in Zhangjiakou Venue Cluster of the Olympics Winter Games Beijing 2022[J].China Scientific Data7(3): 70-83.DOI: 10.11922/11-6035.ncdc.2021.0023.zh .
null
姚晓军, 李龙, 赵军, 等, 2015.近10 年来可可西里地区主要湖泊冰情时空变化[J].地理学报70(7): 1114-1124.DOI: 10.11821/dlxb201507008.Yao X J
null
Li long Zhao J, et al, 2015.Spatial-temporal variations of lake ice in the Hoh Xil region from 2000 to 2011[J].Acta Geographica Sinica70(7): 1114-1124.DOI: 10.11821/dlxb201507008 .
null
张洪源, 吴艳红, 刘衍君, 等, 2018.近20 年青海湖水量变化遥感分析[J].地理科学进展37(6): 823-832.DOI: 10.18306/dlkxjz.2018.06.009.Zhang H Y
null
Wu Y H Liu Y J, et al, 2018.Water storage variation of the Qinghai Lake in recent decades based on satellite observation[J].Progress in Geography37(6): 823-832.DOI: 10.18306/dlkxjz.2018.06.009 .
null
张敬书, 荆林海, 王思远, 2023. 近 20年青藏高原云分布特征及云参数时空变化分析[J].高原气象, 42(5): 1107-1118.DOI: 10.7522/j.issn.1000-0534.2022.00081.Zhang J S
null
Jing L H Wang S Y2023.Spatial and temporal variations of cloud parameters over the Qinghai-Xizang Plateau during the past two decades[J].Plateau Meteorology42(5): 1107-1118.DOI: 10.7522/j.issn.1000-0534.2022.00081 .
null
赵琴, 郝晓华, 王建, 等, 2022.2000-2020年MODIS中国积雪物候数据集[J].中国科学数据(中英文网络版)7(3): 60-69.DOI: 10.11922/11-6035.ncdc.2021.0027.zh.Zhao Q
null
Hao X H Wang J, et al, 2022.A dataset of snow cover phenology in China based on MODIS during 2000-2020[J].China Scientific Data7(3): 60-69.DOI: 10.11922/11-6035.ncdc.2021.0027.zh .
null
赵仪欣, 文莉娟, 王梦晓, 等, 2023.基于能量平衡的分析模型在青海湖湖冰模拟中的应用[J].高原气象42(3): 590-602.DOI: 10.7522/j.issn.1000-0534.2022.00042.Zhao Y X
null
Wen L J Wang M X, et al, 2023.Application of the analytic model based on energy balance into the lake ice simulation of Qinghai Lake[J].Plateau Meteorology42(3): 590-602.DOI: 10.7522/j.issn.1000-0534.2022.00042 .
null
钟歆玥, 康世昌, 郭万钦, 等, 2022.最近十多年来冰冻圈加速萎缩--IPCC第六次评估报告之冰冻圈变化解读[J].冰川冻土44(3): 946-953.DOI: 10.7522/j.issn.1000-0240.2021.0090.Zhong X Y
null
Kang S C Guo W Q, et al, 2022.The rapidly shrinking cryopshere in the past decade: an interpretation of cryospheric changes from IPCC WGI Sixth Assessment Report[J].Journal of Glaciology and Geocryology44(3): 946-953.DOI: 10.7522/j.issn.1000-0240.2021.0090 .
null
庄立超, 2021.巴丹吉林沙漠湖冰物候对气候变化与水循环的响应[D].兰州: 兰州大学.DOI: 10.27204/d.cnki.glzhu.2021. 000414.Zhuang L C, 2021.Response of lake ice phenology in Badain Jaran Desert to climate change and hydrological cycle[D].Lanzhou: Lanzhou University.DOI: 10.27204/d.cnki.glzhu.2021.000414 .
文章导航

/