冷季黑龙江省温带气旋影响下中尺度降水带特征

  • 王艺杰 ,
  • 赵宇 ,
  • 赵玲
展开
  • 1. 南京信息工程大学气象灾害教育部重点实验室/气象灾害预报预警与评估协同创新中心/ 气候与环境变化国际合作联合实验室,江苏 南京 210044
    2. 黑龙江省气象台,黑龙江 哈尔滨 150028

王艺杰(1999 -), 女, 河南开封人, 硕士研究生, 主要从事中尺度气象学研究. E-mail:

收稿日期: 2023-10-06

  修回日期: 2024-01-18

  网络出版日期: 2024-01-18

基金资助

国家自然科学基金面上项目(41975055)

Characteristics of the Mesoscale Precipitation Bands under the influence of Extratropical Cyclones in Heilongjiang Province during Cold Seasons

  • Yijie WANG ,
  • Yu ZHAO ,
  • Ling ZHAO
Expand
  • 1. Key Laboratory of Meteorological Disaster of Ministry of Education /Collaborative Innovation Center on the Forecast and Evaluation of Meteorological Disasters /International Joint Laboratory on Climate and; Environment Change,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China
    2. Heilongjiang Provincial Meteorological Observatory,Harbin 150028,Heilongjiang,China

Received date: 2023-10-06

  Revised date: 2024-01-18

  Online published: 2024-01-18

摘要

基于2010 -2021年黑龙江省9部C波段多普勒雷达观测和常规资料, 结合欧洲中期天气预报中心(European Center for Medium-Range Weather Forecasts, ECMWF)0.25°×0.25°的1 h间隔的ERA5再分析资料, 统计分析了黑龙江省温带气旋暴雪过程中尺度降水带的类型和活动特征, 基于典型个例对比分析了两种主要中尺度降水带的环境场异同。结果表明: (1)中尺度降水带主要分为单带状、 多带状、 短暂带状和非带状; 中尺度降水带主要分布在黑龙江南部和东北部, 位于地面气旋的西北和东北象限, 距离气旋中心900 km范围内, 且主要发生在气旋的锢囚阶段; 运动方式主要是横向平移与混合。(2)不同类型中尺度降水带降水强度的差异可以很好地从物理量的垂直廓线上体现出来, 单带状低层比湿最大, 低层锋生最强, 造成的降水最强; 而非带状低层锋生弱于单带状, 最强比湿在800 hPa附近, 降水范围大, 强度弱于单带状。(3)个例分析表明, 单带状和多带状中尺度降水带均位于850 hPa强暖平流的北侧和地面气旋的东北象限、 处于弱的湿对称稳定或湿对称不稳定环境中, 中尺度降水带的走向与锋生区平行。不同之处为单带状的形成伴随着低层低涡和地面气旋的快速发展和移动, 变形场导致强锋生, 上升运动集中在小范围, 而多带状低层低涡和地面气旋少动、 强度变化不大, 变形场较弱, 锋生较为浅薄, 但高空辐散和低层暖平流更强, 造成的上升运动范围更大, 出现多个上升运动中心, 对应多个小带。

本文引用格式

王艺杰 , 赵宇 , 赵玲 . 冷季黑龙江省温带气旋影响下中尺度降水带特征[J]. 高原气象, 2024 , 43(5) : 1216 -1233 . DOI: 10.7522/j.issn.1000-0534.2024.00007

Abstract

Based on nine C-band Doppler radar observations of Heilongjiang Province and conventional data from 2010 to 2021, combined with 1-h interval ERA5 reanalysis data of 0.25°×0.25° from the European Center for Medium-Range Weather Forecasts, the types and activity characteristics of mesoscale precipitation bands associated with extratropical cyclones in Heilongjiang Province are statistically analyzed, and the similarities and differences in the environment fields of two types of mesoscale precipitation bands are compared through typical cases.The main results are: (1) Mesoscale precipitation bands are primarily divided into single, multi, transitory, and nonbanded.Precipitation bands are mainly located in southern and northeastern Heilongjiang and the northwest and northeast quadrants of surface cyclones, within 900 km from the cyclone centers, and occur in the mature stage of cyclones.The main movement types of mesoscale precipitation bands are laterally translating and hybrid.(2) Vertical profiles of physical quantities can well reflect differences in precipitation intensity of different precipitation bands.Single-banded bands have the most excellent low-level specific humidity and frontogenesis, causing the heaviest precipitation.Non-banded bands have extensively weaker low-level frontogenesis than single-banded bands, with maximum specific humidity near 800 hPa, causing a wide range of precipitation and a weaker precipitation intensity than single-banded bands.(3) The analysis of cases shows that both single-banded and multi-banded bands are located on the north side of the intense 850-hPa warm advection, the northeast quadrant of the surface cyclone, in a small moist symmetric stable or moist symmetric unstable environment.The direction of the mesoscale precipitation band is parallel to the frontogenesis.The differences between them are as follows: for the single-banded band, deformation leads to strong frontogenesis and the upward movement concentrated on a small area, accompanying the development and movement of the low-level low and the surface cyclone, while for the multi-banded, weak deformation and shallow frontogenesis accompanying little movement and intensity change, intense upper-level divergence and low-level warm advection caused more extensive upward motion with multiple upward centers, corresponding to multi bands.

参考文献

null
Baxter M A Schumacher P N2017.Distribution of single-banded snowfall in central U.S.cyclones[J].Weather and Forecasting32(2): 533-554.DOI: 10.1175/WAF-D-16-0154.1 .
null
Emanuel K1985.Frontal circulations in the presence of small moist symmetric stability[J].Journal of the Atmospheric Sciences42(10): 1062-1071.DOI: 10.1175/1520-0469(1985)042<1062: FCITPO>2.0.CO; 2 .
null
Ganetis S A Colle B A Yuter S E, et al, 2018.Environmental conditions associated with observed snowband structures within Northeast U.S.winter storms[J].Monthly Weather Review146(11): 3675-3690.DOI: 10.1175/MWR-D-18-0054.1 .
null
Houze R A Peter V H Kumud R B, et al, 1976.Mesoscale rainbands in extratropical cyclones[J].Monthly Weather Review104(7): 868-878.DOI: 10.1175/1520-0493(1976)104<0868: MRIEC>2.0.CO; 2 .
null
James T M Charles E G Sam N, et al, 2005.A process-oriented methodology toward understanding the organization of an extensive mesoscale snowband: a diagnostic case study of 4-5 December 1999[J].Weather and Forecasting20(1): 35-50.DOI: 10. 1175/WAF-829.1 .
null
Jurewicz M L Evans M S2004.A comparison of two banded, heavy snowstorms with very different synoptic settings[J].Weather and Forecasting19(6): 1011-1028.DOI: 10.1175/WAF-823.1 .
null
Kenyon J S Keyser D Bosart L F, et al, 2020.The motion of mesoscale snowbands in Northeast U.S.winter storms[J].Weather and Forecasting35(1): 83-105.DOI: 10.1175/WAF-D-19-0038.1 .
null
Martin J E1998.The structure and evolution of a continental winter cyclone.Part II: frontal forcing of an extreme snow event[J].Monthly Weather Review126(2): 329-348.DOI: 10.1175/1520-0493(1998)1262.0.CO; 2 .
null
Moore J T Lambert T E1993.The use of equivalent potential vorticity to diagnose regions of conditional symmetric instability[J].Weather and Forecasting8(3): 301-308.DOI: 10.1175/1520-0434(1993)0082.0.CO; 2 .
null
Nicosia D J Grumm R H1999.Mesoscale band formation in three major northeastern United States snowstorms[J].Weather and Forecasting14(3): 346-368.DOI: 10.1175/1520-0434(1999)014<0346: MBFITM>2.0.CO; 2 .
null
Novak D R Colle B A2012.Diagnosing snowband predictability using a multimodel ensemble system[J].Weather and Forecasting27(3): 565-585.DOI: 10.1175/WAF-D-11-00047.1 .
null
Novak D R Lance F B Daniel K, et al, 2004.An observational study of cold season-banded precipitation in northeast US cyclones[J].Weather and Forecasting19(6): 993-1010.DOI: 10.1175/815.1 .
null
Radford J T Lackmann G M Baxter M A2019.An evaluation of snowband predictability in the high-resolution rapid refresh[J].Weather and Forecasting34(5): 1477-1494.DOI: 10.1175/WAF-D-19-0089.1 .
null
Sanders F Bosart L F2010.Mesoscale structure in the megalopolitan snowstorm of 11-12 February 1983.Part I: frontogenetical forcing and symmetric instability[J].Journal of the Atmospheric Sciences42(10): 1050-1061.DOI: 10.1175/1520-0469(1985)0422.0.CO; 2 .
null
Sawyer J S1956.The vertical circulation at meteorological fronts and its relation to frontogenesis[J].Proceedings of the Royal Society of London234(1198): 346-362.DOI: 10.2307/99840 .
null
Schultz D Schumacher P1999.The use and misuse of conditional symmetric instability[J].Monthly Weather Review127(12): 2709-2732.DOI: 10.1175/1520-0493(1999)127<2709: TUAMOC>2.0.CO; 2 .
null
Thorpe A J Emanuel K A1985.Frontogenesis in the presence of small stability to slantwise convection[J].Journal of the Atmospheric Sciences42(17): 1809-1824.DOI: 10.1175/1520-0469(1985)042<1809: FITPOS>2.0.CO; 2 .
null
Xu Q1992.Formation and evolution of frontal rainbands and geostrophic potential vorticity anomalies[J].Journal of the Atmospheric Sciences49(8): 629-648.DOI: 10.1175/1520-0469(1992)049<0629: FAEOFR>2.0.CO; 2 .
null
白云飞, 赵宇, 李树岭, 等, 2023.造成东北地区暴雪过程的温带气旋暖输送带特征研究[J].高原气象42(5): 1271-1284.DOI: 10.7522/j.issn.1000-0534.2022.00108.Bai Yunfei
null
Zhao Yu Li Shuling, et al, 2023.Characteristics of warm conveyor belts in extratropical cyclones causing snowstorms in Northeastern China[J].Plateau Meteorology42(5): 1271-1284.DOI: 10.7522/j.issn.1000-0534.2022.00108 .
null
范俊红, 易笑园, 2019.大范围持续暴雪过程中多种影响系统的对比分析[J].气象学报77(6): 965-979.
null
Fan J H Yi X Y2019.Comparative analysis of several influencing systems in the process of a large-scale continuous snowstorm[J].Acta Meteorologica Sinica77(6): 965-979.
null
何立富, 齐道日娜, 余文, 2022.引发东北极端暴雪的黄渤海气旋爆发性发展机制[J].应用气象学报33(4): 385-399.
null
He L F Chyi D Yu W2022.Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China[J].Journal of Applied Meteorological Science33(4): 385-399.
null
黄子怡, 赵宇, 李树岭, 等, 2023.东北地区温带气旋暴雪过程的大气河特征[J].高原气象42(3): 734-747.DOI: 10.7522/j.issn.1000-0534.2022.00076.Huang Z Y
null
Zhao Y Li S L, et al, 2023.Characteristics of the atmospheric rivers in snowstorms caused by extratropical cyclones in Northeastern China[J].Plateau Meteorology42(3): 734-747.DOI: 10.7522/j.issn.1000-0534.2022.00076 .
null
姜俊玲, 魏鸣, 康浩, 等, 2010.2005年12月山东半岛暴雪成因及多尺度信息特征[J].大气科学学报33(3): 328-335.JiangJ L, WeiM, KangH, et al, 2010.Mechanism and multi-scale characteristics of snowstorm process occurred in Shandong Peninsula in December 2005[J].Transactions of Atmospheric Sciences, 33(3): 328-335.
null
刘宁微, 齐琳琳, 韩江文, 2009.北上低涡引发辽宁历史罕见暴雪天气过程的分析[J].大气科学33(2): 275-284.
null
Liu N W Qi L L Han J W2009.The analyses of an unusual snowstorm caused by the northbound vortex over Liaoning Province in China[J].Chinese Journal of Atmospheric Sciences33(2): 275-284.
null
刘玉莲, 于宏敏, 任国玉, 等, 2010.1961~2006年黑龙江省暴雪气候时空变化特征[J].气候与环境研究15(4): 470-478.
null
Liu Y L Yu H M Ren G Y, et al, 2010.Temporal and spatial variation characteristics of the snow storms in Heilongjiang Province during 1961-2006[J].Climatic and Environmental Research15(4): 470-478.
null
孙艳辉, 李泽椿, 寿邵文, 2012.2007年3月3
null
-5 日辽宁省暴雪和大风天气的中尺度分析[J].气象学报70(5): 936-948. Sun Y H Li Z C Shou S W2012.A mesoscale analysis of the snowstorm event of 3-5 March 2007 in Liaoning Province[J].Acta Meteorologica Sinica, 70(5): 936-948.
null
孙莎莎, 孙艺, 徐婷婷, 2023.2021年11月7日山东极端暴雪过程降水相态的多源资料特征分析[J].气象49(7): 830-842.
null
Sun S S Sun Y Xu T T2023.Multi-source observational characteristics of precipitation phase during extreme snowstorm in Shandong on 7 November 2021[J].Meteorological Monthly49(7): 830-842.
null
王建中, 丁一汇, 1995.一次华北强降雪过程的湿对称不稳定性研究[J].气象学报(4): 451-460.
null
Wang J Z Ding Y H1995.Research of moist symmetric instability in a strong snowfall in North China[J].Acta Meteorologica Sinica(4): 451-460.
null
武静雅, 毕永恒, 孙强, 2021.结合Ka和X波段双偏振雷达对北京一次锋面降雪过程雪带的观测分析[J].大气科学45(5): 931-942.
null
Wu J Y Bi Y H Sun Q, et al, 2021.Observation and analysis of snowband structure in a process of cyclone frontal snowfall in Beijing with Ka-band and X-band Polarized Radars[J].Chinese Journal of Atmospheric Sciences45(5): 931-942.
null
熊秋芬, 张玉婷, 姜晓飞, 等, 2018.锢囚气旋钩状云区暴雪过程的水汽源地及输送分析[J].气象44(10): 1267-1274.
null
Xiong Q F Zhang Y T Jiang X F, et al, 2018.Analysis of moisture source and transport of snowstorm in hooked cloud area of an occluded cyclone[J].Meteorological Monthly44(10): 1267-1274.
文章导航

/