山地雷达估算降水的反射率因子订正方法研究
收稿日期: 2023-05-18
修回日期: 2023-11-07
网络出版日期: 2023-11-07
基金资助
国家自然科学基金联合基金项目(U2142210); 中国气象科学研究院基本科研业务重点项目(2023Z022)
Mountainous Radar Estimation of Precipitation Reflectivity Factor Correction Method Research
Received date: 2023-05-18
Revised date: 2023-11-07
Online published: 2023-11-07
我国很多新一代多普勒天气雷达位于地形复杂的山区, 低仰角地形遮挡问题突出, 遮挡区雷达估算降水时需要采用更高仰角的观测数据, 而由于降水粒子下落过程中的微物理变化和水平运动, 同一地点高处的反射率因子常与近地表处有很大的差异, 直接用于估算地表降水会增大估算误差。本文提出一种反射率因子垂直订正方法, 首先建立无遮挡观测区不同降水类型的雷达反射率因子垂直廓线(VPR), 然后依据廓线的垂直变化特征, 确定待订正的高度阈值和近地表目标高度, 并将待订正高度以上的观测值订正到目标高度处。对比检验结果表明: 经过订正后的目标反射率因子数据与实际观测数据值差异减少, 一致性提高; 而且, 考虑遮挡因素使VPR低处的数据更准确; 由于不同降水类型VPR差别明显, 区分降水类型能避免误订正。本订正方法不仅适用于波束遮挡区, 也普遍适用于远距离处波束较高时观测数据的订正。
李祎潮 , 王红艳 , 许东蓓 , 张雅馨 , 高岚 . 山地雷达估算降水的反射率因子订正方法研究[J]. 高原气象, 2024 , 43(3) : 723 -736 . DOI: 10.7522/j.issn.1000-0534.2023.00089
Many new-generation Doppler weather radars in China are located in mountainous areas with complex topography, and the problem of low elevation angle terrain occlusion is prominent.When estimating precipitation by radar in the occluded area, observations with higher elevation angles need to be used, and due to the micro-physical changes and horizontal motion of precipitation particles during their descent, the reflectivity factor at high locations of the same site is often very different from that near the surface, which will increase the estimation error when used directly for estimating surface precipitation.In this paper, we propose a method for the vertical revision of reflectivity factor.First, we establish the vertical reflectivity factor profiles (VPR) of different precipitation types in the unobstructed observation area, and then revise the observations above the height to be revised to the target height by determining the height threshold to be revised and the near-surface target height based on the vertical variation characteristics of the profiles.The comparison test results show that: the revised target reflectivity factor data are less different from the actual observed data values, and the consistency is improved; moreover, the data at low VPR are more accurate by considering the occlusion factor; since the VPR of different precipitation types are significantly different, the differentiation of precipitation types can avoid mis-correction.The proposed revision method is not only applicable to the beam blocking area, but also generally applicable to the revision of the observed data at high beam height at long distances.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | Westrick, |
null | |
null | |
null | |
null | |
null | 曹杨, 陈洪滨, 苏德斌, 2018.C波段双线偏振天气雷达零度层亮带识别和订正[J].应用气象学报, 29(1): 84-96.Cao Y, Chen H B, Su D B, 2018.Identification and correction of the bright band using a C-band dual polarization weather radar[J].Journal of Applied Meteorological Science, 2018, 29(1): 84-96. |
null | 陈超, 胡志群, 胡胜, 等, 2019.CINRAD-SA双偏振雷达资料在降水估测中的应用初探[J].气象, 45(1): 113-125. |
null | |
null | 胡胜, 张羽, 邓文剑, 等, 2014.深圳新一代天气雷达山体阻挡的订正方案及效果检验[J].热带气象学报, 30(1): 1-10.Hu S, Zhang Y, Deng W J, et al, 2014.Correction schemes for radar blockage by complex terrain at Shenzhen and validation[J].Journal of Tropical Meteorology.30(1): 1-10. |
null | 黄旋旋, 朱科锋, 赵坤, 2017.利用雷达反射率因子垂直廓线改进复杂地形下的台风降水估测精度[J].气象, 43(10): 1198-1212. |
null | |
null | 金龙, 阮征, 葛润生, 等, 2016.C-FMCW雷达对江淮降水云零度层亮带探测研究[J].应用气象学报, 27(3): 312-322. |
null | |
null | 李慧, 银燕, 单云鹏, 等, 2018.黄山层状云和对流云降水不同高度的雨滴谱统计特征分析[J].大气科学, 42(2): 268-280. |
null | |
null | 刘黎平, 牟容, 许小永, 等, 2007.一次飑线过程的动力和微物理结构及滴谱变化对降水估测的影响研究[J].气象学报, 65(4): 601-611. |
null | |
null | 刘黎平, 吴林林, 杨引明, 2007.基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析[J].气象学报, 65(2): 252-260. |
null | |
null | 刘维成, 沙宏娥, 肖玮, 等, 2022.基于地理地形因子动态调整的复杂地形区雷达定量估测降水技术[J].高原气象, 41(3): 708-720.DOI: 10.7522/j.issn.1000-0534.2021.00022.Liu W C , |
null | |
null | 刘晓阳, 李郝, 何平, 等, 2018.GPM/DPR雷达与CINRAD雷达降水探测对比[J].应用气象学报, 29(6): 667-679. |
null | |
null | 戚友存, 2012.通过VPR订正技术提高雷达定量降水估计能力[D].江苏: 南京信息工程大学.Qi Y C, 2012.Improving radar based precipitation estimation through VPR correction [D].Nanjing: Nanjing University of Information Science & Technology. |
null | 沈程锋, 李国平, 2022.基于GPM资料的四川盆地及周边地区夏季地形降水垂直结构研究[J].高原气象, 41(6): 1532-1543.DOI: 10.7522/j.issn.1000-0534.2021.0116.Shen C F , |
null | |
null | 史朝, 何建新, 李学华, 等, 2013.X波段天气雷达地物回波的双偏振参量特征分析及应用[J].高原气象, 32(5): 1478-1484, |
null | |
null | 史锐, 程明虎, 崔哲虎, 等, 2005.多普勒雷达实时反射率因子垂直廓线观测研究[J].气象, 31(9): 39-43. |
null | |
null | 孙伟, 徐芬, 2018.基于偏度方法的地物杂波识别及去除[J].干旱气象, 36(3): 522-528. |
null | |
null | 王红艳, 刘黎平, 2015.新一代天气雷达降水估算的区域覆盖能力评估[J].高原气象, 34(6): 1772-1784.DOI: 10.7522/j.issn.1000-0534.2014.00122.Wang H Y , |
null | |
null | 王红艳, 刘黎平, 何丽萍, 2014.浙江山区新一代天气雷达波束遮挡分析[J].高原气象, 33(6): 1737-1747.DOI: 10.7522/j.issn.1000-0534.2013.00173.Wang H Y , |
null | |
null | 王洪, 孔凡铀, |
null | |
null | 吴翠红, 万玉发, 吴涛, 等, 2006.雷达回波垂直廓线及其生成方法[J].应用气象学报, 17(2): 232-239. |
null | |
null | 夏丰, 刘显通, 郑腾飞, 等, 2021.C波段双偏振天气雷达降雨和部分地形遮挡衰减订正研究[J].热带气象学报, 37(4): 13.Xia F, Liu X T, Zheng T F, et al, 2021.Correction of rainfall attenuation and partial terrain blockage for C-Band Dual Polarization weather radar[J].Journal of Tropical Meteorology, 37(4): 556-568 |
null | 徐八林, 刘黎平, 王改利, 2011.超低仰角扫描改进高山雷达降水估测[J].高原气象, 30(5): 1337-1345. |
null | |
null | 杨泷, 刘黎平, 王红艳, 2015.利用反射率因子垂直廓线填补雷达波束遮挡区的方法研究[J].气象科技, 43(5): 788-793. |
null | |
null | 杨有林, 纪晓玲, 张肃诏, 等, 2018.基于雷达回波强度面积谱识别降水云类型[J].应用气象学报, 29(6): 690-700. |
null | |
null | 张乐坚, 程明虎, 陶岚, 2010.CINRAD-SA/SB零度层亮带识别方法[J].应用气象学报, 21(2): 171-179. |
null | |
null | 赵放, 高玉春, 潘劲松, 等, 2012.华东登陆热带气旋若干回波参数的分析应用[J].热带气象学报, 28(3): 392-398. |
null | |
null | 朱丹, 谷军霞, 师春香, 等, 2018.新一代天气雷达布网设计的有效覆盖和地形遮挡分析[J].气象, 44(11): 1434-1444. |
null | |
null | 左园园, 郑佳锋, 贺婧姝, 等, 2022.一次高原涡过境的不同云-降水垂直结构和特征研究[J].高原气象, 41(5): 1251-1265.DOI: 10.7522/j.issn.1000-0534.2021.00059.Zuo Y Y , |
null |
/
〈 |
|
〉 |