青藏高原低涡的活动特征和敏感区识别及其与陆面的关联分析研究
收稿日期: 2023-05-29
修回日期: 2023-11-08
网络出版日期: 2023-11-08
基金资助
国家自然科学基金项目(42075150); 上海市科委自然科学计划项目(21ZR1405500)
Characteristics of Qinghai-Xizang Plateau Vortex Activities and Identification of Sensitive Areas: A Study on Its Correlation with the Land Surface
Received date: 2023-05-29
Revised date: 2023-11-08
Online published: 2023-11-08
青藏高原低涡是夏季青藏高原边界层内产生的中尺度低压涡旋系统, 对高原天气及其周边地区降水有重要影响。本文利用由客观识别法得到的高原低涡数据集以及ERA5-land再分析资料, 通过相关分析、 回归分析、 贝叶斯时间序列分析算法和概率统计等方法, 对1950 -2021年高原低涡的活动特征进行了统计和分析, 根据高原低涡的路径及强度划定了高原低涡活动的敏感区, 并分析了不同陆面参量与高原低涡的联系。结果表明, 高原低涡的年总个数和年总持续时间都呈显著增加趋势(置信度95%), 气候倾向率分别为0.16个·a-1和1.25 h·a-1; 高原低涡活跃期(5 -8月)总个数和总持续时间的增加趋势不显著; 高原低涡活动的敏感区位于藏北高原北侧、 可可西里山脉附近, 与青藏高原中西部的主要山脉相对应; 敏感区内的地表潜热、 地表长波辐射以及地表0~7 cm土壤湿度与高原低涡个数和持续时间呈正相关, 而地表感热与高原低涡个数和持续时间呈负相关; 进一步发现当时间尺度为年际变化时, 高原低涡与降水的变化相对一致, 而在日尺度上, 地表感热主要在敏感区及其以东地区与低涡个数、 持续时间和强度呈正相关, 其中以5月和6月最为显著。本研究中的结论为进一步分析高原低涡敏感区内的陆-气相互作用机理, 以及高原低涡数值模拟和数据同化研究提供理论依据。
李世园 , 吕少宁 , 文军 . 青藏高原低涡的活动特征和敏感区识别及其与陆面的关联分析研究[J]. 高原气象, 2024 , 43(3) : 529 -548 . DOI: 10.7522/j.issn.1000-0534.2023.00090
The Qinghai-Xizang Plateau Vortex is a mesoscale low-pressure vortex system generated within the boundary layer of the Qinghai-Xizang plateau in summer, which not only has an important influence on the weather patterns and precipitation dynamics across the plateau, but also profoundly impacts the surrounding regions.In this study, the database of the plateau vortex obtained from an objective analysis method, along with ERA5-land reanalysis data, was utilized to conduct a comprehensive statistical and analytical investigation of the vortex's activity from 1950 to 2021.Various analytical methods, including correlation analysis, regression analysis, Bayesian time series analysis algorithm, and probability statistics were used.Furthermore, the intensity and path of the plateau vortex during the years 1950 and 2021 were specifically examined to identify the areas most sensitive to its activity during this time span.Results reveal a noteworthy increasing trend (at a 95% confidence level) in both the annual number and duration of the plateau vortex, with climate tendency rates of 0.16·a-1 and 1.25 h·a-1, respectively.However, the growing trend for the total number and duration of the plateau vortex during the active period (May to August) is not statistically significant.The sensitive areas that affect the activity of the plateau vortex are located on the north side of the northern Qinghai-Xizang Plateau and near the Hoh Xil Mountains, corresponding to the main mountains in the central and western Qinghai-Xizang Plateau.Furthermore, the study investigates the relationship between land surface parameters and the vortex's characteristics, showing positive correlations between latent heat, surface longwave radiation, and surface soil moisture (0~7 cm) with the number and duration of the plateau vortex.Conversely, sensible heat exhibits a negative correlation, it is further found that the plateau vortex is relatively consistent with precipitation when the time scale of the study is inter-annual, while on the daily scale, the sensible heat is positively correlated with the number, duration, and intensity of the plateau vortex mainly in the sensitive areas and to the east of the sensitive areas, with the most significant correlation being in the months of May and June.In conclusion, the results derived from this study provide a solid theoretical foundation for further exploration of the land-atmosphere interaction mechanism in the identified sensitive area.Moreover, these findings lay a critical foundation for enhancing numerical simulations and data assimilation studies of the Qinghai-Xizang Plateau Vortex.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 段安民, 肖志祥, 王子谦, 2018.青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展[J].大气科学, 42(4): 755-766.DOI: 10.3878/j.issn.1006-9895.1801.17247.Duan A M , |
null | |
null | 段安民, 肖志祥, 吴国雄, 2016.1979-2014年全球变暖背景下青藏高原气候变化特征[J].气候变化研究进展, 12(5): 374-381.DOI: 10.12006/j.issn.1673-1719.2016.039.Duan A M , |
null | |
null | 郭维栋, 马柱国, 王会军, 2007.土壤湿度——一个跨季度降水预测中的重要因子及其应用探讨[J].气候与环境研究, (1): 20-28. |
null | |
null | 赖欣, 范广洲, 华维, 等, 2021.青藏高原陆气相互作用对东亚区域气候影响的研究进展[J].高原气象, 40(6): 1263-1277.DOI: 10.7522/j.issn.1000-0534.2021.zk018.Lai X , |
null | |
null | 李国平, 卢会国, 黄楚惠, 等, 2016.青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响[J].大气科学, 40(1): 131-141.DOI: 10.3878/j.issn.1006-9895.1504.15125.Li G P , |
null | |
null | 李黎, 吕世华, 范广洲, 2019.夏季青藏高原地表能量变化对高原低涡生成的影响分析[J].高原气象, 38(6): 1172-1180. DOI: 10.7522/j.issn.1000-0534.2018.00154.Li L , |
null | |
null | 林志强, 2021.青藏高原低涡年际年代际变化特征、 机理及其未来预估[D].南京: 南京大学, 1-178. |
null | |
null | 林志强, 郭维栋, 2022.多再分析数据得到的高原低涡数据集(1979-2021)[DB].国家青藏高原科学数据中心, https: //doi.org/10.11888/Atmos.tpdc.272374.Lin Z Q, Guo W D, 2022.Database of the Tibetan Plateau vortex derived from multiple reanalysis (1979-2021)[DB].National Tibetan Plateau / Third Pole Environment Data Center. |
null | 林志强, 郭维栋, 姚秀萍, 等, 2023.基于多源资料的高原低涡源地研究[J].大气科学, 47(3): 837-852. DOI: 10.3878/j.issn.1006-9895.2211.21262.Lin Z Q , |
null | |
null | 林志强, 周振波, 假拉, 2013.高原低涡客观识别方法及其初步应用[J].高原气象, 32(6): 1580-1588. DOI: 10.7522/j.issn.1000-0534.2012.00153.Lin Z Q , |
null | |
null | 吕美仲, 侯志明, 周毅, 2004.动力气象学[M].北京: 气象出版社, 124-128. |
null | |
null | 马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象, 40(6): 1241-1262.DOI: 10.7522/j.issn.1000-0534.2021.zk006.Ma Y M , |
null | |
null | 王澄海, 杨凯, 张飞民, 等, 2021.青藏高原土壤冻融过程的气候效应: 进展和展望[J].高原气象, 40(6): 1318-1336. DOI: 10.7522/j.issn.1000-0534.2021.zk021.Wang C H , |
null | |
null | 王树舟, 马耀明, 吴文玉, 2023.基于Noah-MP陆面模式的青藏高原地表感热和潜热通量分布及变化特征[J].高原气象, 42(1): 25-34.DOI: 10.7522/j.issn.1000-0534.2022.00036.Wang S Z , |
null | |
null | 王鑫, 李跃清, 郁淑华, 等, 2009.青藏高原低涡活动的统计研究[J].高原气象, 28(1): 64-71. |
null | |
null | 文军, 蓝永超, 苏中波, 等, 2011.黄河源区陆面过程观测和模拟研究进展[J].地球科学进展, 26(6): 575-585. |
null | |
null | 叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社, 220-224. |
null | |
null | 张博, 李国平, 2017.基于CFSR资料的青藏高原低涡客观识别技术及应用[J].兰州大学学报(自然科学版), 53(1): 106-111+118. |
null | |
null | 张人禾, 苏凤阁, 江志红, 等, 2015.青藏高原21世纪气候和环境变化预估研究进展[J].科学通报, 60(32): 3036-3047.DOI: 10.1360/N972014-01296.Zhang R H , |
null | |
null | 赵平, 李跃清, 郭学良, 等, 2018.青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验[J].气象学报, 76(6): 833-860.DOI: 10.11676/qxxb2018.060.Zhao P , |
null |
/
〈 |
|
〉 |