干湿对流大气边界层大涡模拟及模式收敛性分析

  • 张艺馨 ,
  • 彭新东
展开
  • 1. 中国气象科学研究院灾害天气国家重点实验室,北京 100081
    2. 中国气象局地球系统数值预报中心模式技术室,北京 100081

张艺馨(1999 -), 女, 山东人, 硕士研究生, 主要从事数值预报研究. E-mail:

收稿日期: 2023-11-24

  修回日期: 2024-03-15

  网络出版日期: 2024-03-15

基金资助

国家自然科学基金项目(42075151)

Large-Eddy Simulation of Dry and Moist Atmospheric Boundary Layers and Analysis of the Model Convergence

  • Yixin ZHANG ,
  • Xindong PENG
Expand
  • 1. State Key Laboratory of Sever Weather,Chinese Academy of Meteorological Sciences,Beijing 100081,China
    2. Division of Numerical Model Techniques,China Meteorological Administration Earth System Modeling and Prediction Centre,Beijing 100081,China

Received date: 2023-11-24

  Revised date: 2024-03-15

  Online published: 2024-03-15

摘要

利用中尺度天气研究预报模式WRF中的大涡模拟(LES)版本对理想干对流边界层和浅对流云覆盖的海洋性大气边界层结构和湍流输送特征进行大涡模拟, 并通过不同水平分辨率大涡模拟结果分析了大涡模式的收敛性。结果表明: 不同分辨率大涡模式模拟的干对流边界层高度约为1.15 km, 位温、 水汽混合比和水平风速等平均变量在边界层内均匀分布, 但在近地层和边界层顶垂直梯度较大。随模式分辨率的提高, 可分辨出更精细的对流泡结构, 夹卷层的位温方差增大, 模拟的混合层平均物理量均匀分布更接近地面, 与粗分辨率下大涡模拟的偏差主要集中在边界层下层和逆温层附近, 解析热通量增加, 但总热通量保持不变。不同于干对流边界层, 在有浅对流云覆盖的边界层内, 混合层高度较低, 混合层内平均气象要素垂直廓线和方差或通量廓线与干对流边界层内相似, 低层混合层内平均气象要素呈垂直均匀分布, 但由于混合层以上存在条件不稳定云层, 云层内有正热通量和正垂直湍流动能, 而混合层顶到浅对流云底部为负热通量, 反映了混合层顶夹卷过程作用。较粗分辨率的大涡模式增加了逆温层顶、 近地层平均风速和通量的模拟偏差。湍流发展旺盛的干对流边界层, 大涡模式在约40 m的水平分辨率上收敛, 而对混合层高度较低的浅积云覆盖边界层, 模式则在约30 m水平分辨率上收敛, 具有较低混合层高度的大气边界层需要更高分辨率的大涡模式描述。

本文引用格式

张艺馨 , 彭新东 . 干湿对流大气边界层大涡模拟及模式收敛性分析[J]. 高原气象, 2024 , 43(6) : 1559 -1572 . DOI: 10.7522/j.issn.1000-0534.2024.00039

Abstract

By using the large eddy simulation (LES) version of the Weather Research and Forecasting (WRF) model, vertical structure and the feature of turbulent transportation of shallow-convective-cloud-topped atmospheric convective boundary layer was simulated in addition to the idealized dry convective boundary layer on oceanic surface.Numerical convergence of LES model was analyzed with the model results in different resolutions.The results showed that the dry convective boundary layer was vigorous.Approximately 1.15 km of the planetary boundary layer height was simulated with the LES in different resolutions.Vertical uniform structure of the averaged potential temperature (θ), mixing ratio of water vapor ( q v) and horizontal wind (u and v) were shown in the idealized dry convective boundary layer but with large vertical gradients in the near surface layer and the top of the boundary layer.Higher resolution model resolved more detailed structure of convective bubbles within the dry convective boundary layer, larger variance of potential temperature in the entrainment layer, vertical uniform distribution of the averaged quantities within the simulated mixed layer extending more closing to the surface, and the errors in LES model under coarse resolution were mainly concentrated in the lower boundary layer and near the inversion layer.The higher resolution LES model showed larger resolved sensible heat flux while the total flux remained.In the case of shallow-convective-cloud-topped boundary layer, obvious different boundary layer structure was displayed in comparison with that of the dry convective boundary layer.Conditionally unstable layer existed over the mixing layer, and mixing layer height dropped.Vertical profiles of averaged θ q vu and v showed similar structure in the mixing layer as that in the convective boundary layer.The averaged meteorological quantities in the lower mixing layer were uniformly distributed in vertical direction.In the cloudy layer, however, positive heat flux and vertical turbulent kinetic energy appeared.Negative heat flux was observed from the top of mixing layer to the lower cloudy layer, which reflected the weak inverse temperature and entrainment at top of mixing layer.Lower-resolution model simulated more deviations of the top of temperature inversion, and mean wind velocity and fluxes near surface.The large eddy simulation model tended to converge at 40 m resolution in the vigorously developing dry convective boundary layer case while it converged at 30 m resolution in the shallow-convective-cloud-topped boundary layer.The atmospheric boundary layer with lower mixing layer height needs to be simulated using a higher resolution LES model.

参考文献

null
Augstein E Riehl H Ostapoff F, et al, 1973.Mass and energy transports in an undisturbed Atlantic trade-wind flow[J].Monthly Weather Review101(2): 101-111.DOI: 10.1175/1520-0493(1973)1012.3.CO; 2 .
null
Augstein E Schmidt H Ostapoff F1974, The vertical structure of the atmospheric planetary boundary layer in undisturbed trade winds over the Atlantic Ocean[J].Boundary-Layer Meteorology, 6: 129-150.DOI: 10.1007/BF00232480 .
null
Deardorff J W1972.Numerical investigation of neutral and unstable planetary boundary layers[J].Journal of Atmospheric Sciences29(1): 91-115.DOI: 10.1175/1520-0469(1972)029<0091: NIONAU>2.0.CO; 2 .
null
Hechtel L M Stull R B Moeng C H1990.The effects of nonhomogeneous surface fluxes on the convective boundary layer: A case study using large-eddy simulation[J].Journal of the Atmospheric Sciences47(14): 1721-1741.DOI: 10.1175/1520-0469(1990)0472.0.CO; 2 .
null
Huang Y Peng X D2017.Improvement of the Mellor-Yamada-Nakanishi-Niino planetary boundary-layer scheme based on observational data in China[J].Boundary-Layer Meteorology, 162: 171-188.DOI: 10.1175/1520-0469(1990)047<1721: TEONSF>2.0.CO; 2 .
null
Kirkil G Mirocha J Bou-Zeid E, et al, 2012.Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF[J].Monthly Weather Review140(1): 266-284.DOI: 10.1175/MWR-D-11-00037.1 .
null
LeMone M A Angevine W M Bretherton C S, et al, 2019.100 years of progress in boundary layer meteorology[J].Meteorological Monographs, 59: 9.1-9.85.DOI: 10.1175/AMSMONOGRAPHS-D-18-0013.1 .
null
Mason P J Callen N S1986.On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow[J].Journal of Fluid Mechanics, 162: 439-462.DOI: 10. 1017/S0022112086002112 .
null
Mirocha J D Lundquist J K Kosovi? B2010.Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the Advanced Research WRF model[J].Monthly Weather Review138(11): 4212-4228.DOI: 10.1175/2010MWR3286.1 .
null
Moeng C H1984.A large-eddy-simulation model for the study of planetary boundary-layer turbulence[J].Journal of Atmospheric Sciences41(13): 2052-2062.DOI: 10.1175/1520-0469(1984) 0412.0.CO; 2 .
null
Moeng C H Dudhia J Klemp J, et al, 2007.Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model[J].Monthly Weather Review135(6): 2295-2311.DOI: 10.1175/MWR3406.1 .
null
Nakanishi M Niino H2004.An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification[J].Boundary-Layer Meteorology, 112: 1-31.DOI: 10.1023/B: BOUN.0000020164.04146.98 .
null
Nakanishi M Niino H2009.Development of an improved turbulence closure model for the atmospheric boundary layer[J].Journal of the Meteorological Society of Japan87(5): 895-912.DOI: 10.2151/jmsj.87.895 .
null
Nuijens L Stevens B2012.The influence of wind speed on shallow marine cumulus convection[J].Journal of the Atmospheric Sciences69(1): 168-184.DOI: 10.1175/JAS-D-11-02.1 .
null
Reinert D Wirth V2009.A new large-eddy simulation model for simulating air flow and warm clouds above highly complex terrain.Part II: The moist model and its application to banner clouds[J].Boundary-Layer Meteorology, 133: 113-136.DOI: 10. 1007/s10546-009-9419-x .
null
Schmidt H Schumann U1989.Coherent structure of the convective boundary layer derived from large-eddy simulations[J].Journal of Fluid Mechanics, 200: 511-562.DOI: 10.1017/S0022112089000753 .
null
Shin H H Hong S Y2013.Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions[J].Journal of the Atmospheric Sciences70(10): 3248-3261.DOI: 10.1175/JAS-D-12-0290.1 .
null
Siebesma A P Bretherton C S Brown A, et al, 2003.A large eddy simulation intercomparison study of shallow cumulus convection[J].Journal of the Atmospheric Sciences60(10): 1201-1219.DOI: 10.1175/1520-0469(2003)60<1201: ALESIS>2.0.CO; 2 .
null
Stevens B Ackerman A S Albrecht B A, et al, 2001.Simulations of trade wind cumuli under a strong inversion[J].Journal of the Atmospheric Sciences58(14): 1870-1891.DOI: 10.1175/1520-0469(2001)0582.0.CO; 2 .
null
Stull R B1988.An Introduction to Boundary Layer Meteorology[M].Springer Science & Business Media.
null
Tian W S Parker D J2002.Two‐dimensional simulation of orographic effects on mesoscale boundary-layer convection[J].Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography128(584): 1929-1952.DOI: 10.1256/003590002320603476 .
null
Walko R L Cotton W R Pielke R A1992.Large-eddy simulations of the effects of hilly terrain on the convective boundary layer[J].Boundary-Layer Meteorology58(1/2): 133-150.DOI: 10.1007/BF00120755 .
null
Wei W Peng X D Lin Y L, et al, 2022.Extension and evaluation of University of Washington moist turbulence scheme to gray-zone scales[J].Journal of Advances in Modeling Earth Systems14(8): e2021MS002978.DOI: 10.1029/2021MS002978 .
null
Zhang X Bao J W Chen B, et al, 2018.A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model[J].Monthly Weather Review146(7): 2023-2045.DOI: 10. 1175/MWR-D-17-0356.1 .
null
Zheng Y Alapaty K Herwehe J A, et al, 2016.Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain-Fritsch scheme[J].Monthly Weather Review144(3): 833-860.DOI: 10.1175/MWR-D-15-0005.1 .
null
Zhu P2008.Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies[J].Journal of Geophysical Research: Atmospheres, 113(D17).DOI: 10. 1029/2007JD009643 .
null
蔡旭晖, 陈家宜, 1997.对流边界层中泡状结构的大涡模拟研究[J].大气科学21(2): 223-230.DOI: 10.1088/0256-307X/13/9/012.Cai X H
null
Chen J Y1997.Large eddy simulation of bubble-like structures in the convective boundary layer[J].Chinese Journal of Atmospheric Sciences21(2): 223-230.DOI: 10.1088/0256-307X/13/9/012 .
null
曹帮军, 吕世华, 张宇, 等, 2020.绿洲灌溉对垂直湍流热通量影响的大涡模拟研究[J].大气科学44(6): 1188-1202.DOI: 10.3878/j.issn.1006-9895.1912.19163.Cao B J
null
S H Zhang Y, et al, 2020.Impact of irrigation in the oasis in northwestern China on vertical turbulent heat flux using large-eddy simulation[J].Chinese Journal of Atmospheric Sciences44(6): 1188-1202.DOI: 10.3878/j.issn.1006-9895.1912.19163 .
null
程志刚, 李炬, 张鑫宇, 等, 2020.基于三台测风激光雷达的大气湍流和三维风场研究[J].气象学报78(6): 1021-1036.DOI: 10.11676/qxxb2020.070.Cheng Z G
null
Li J Zhang X Y, et al, 2020.A study on turbulence and three-dimensional wind field based on observations of three wind lidars[J].Acta Meteorologica Sinica78(6): 1021-1036.DOI: 10.11676/qxxb2020.070 .
null
伏薇, 李茂善, 阴蜀城, 等, 2022.西风南支与高原季风环流场下青藏高原大气边界层结构研究[J].高原气象41(1): 190-203.DOI: 10.7522/j.issn.1000-0534.2021.00016.Fu W
null
Li M S Yin S C, et al, 2022.Study on the atmospheric boundary layer structure of the Qinghai-Xizang Plateau under the south branch of the westerly wind and the plateau monsoon circulation field[J].Plateau Meteorology41(1): 190-203.DOI: 10.7522/j.issn.1000-0534.2021.00016 .
null
黄翊, 彭新东, 2017.边界层湍流参数化改进对雾的模拟影响[J].大气科学41 (3): 533-543.DOI: 10.3878/j.issn.1006-9895.1606.16152.Huang Y
null
Peng X D2017.The impact of an improved planetary boundary layer parameterization scheme on the simulation of fog[J].Chinese Journal of Atmospheric Sciences41(3): 533-543.DOI: 10.3878/j.issn.1006-9895.1606.16152 .
null
李雪洮, 梁捷宁, 郭琪, 等, 2020.利用大涡模式模拟黄土高原地区对流边界层特征[J].高原气象39(3): 523-531.DOI: 10.7522/j.issn.1000-0534.2019.00050.Li X T
null
Liang J N Guo Q, et al, 2020.Simulate of convective boundary layer characteristics in the Loess Plateau by WRF large-eddy[J].Plateau Meteorology39(3): 523-531.DOI: 10.7522/j.issn.1000-0534.2019.00050 .
null
李叶晴, 师春香, 沈润平, 等, 2023.基于WRF-LES的门头沟地区近地面风场模拟与边界层方案敏感性研究[J].高原气象42(3): 758-770.DOI: 10.7522/j.issn.1000-0534.2022.00084.Li Y Q
null
Shi C X Shen R P, et al, 2023.Simulation of near-surface wind over Mentougou with WRF-LES and sensitivity study of planetary boundary layer schemes[J].Plateau Meteorology42(3): 758-770.DOI: 10.7522/j.issn.1000-0534.2022.00084 .
null
卢绪兰, 彭新东, 2021.尺度自适应大气边界层参数化改进及其对一次海雾的数值模拟研究[J].气象学报79(1): 119-131.DOI: 10.11676/qxxb2021.003.Lu X L
null
Peng X D2021.Scale-aware parameterization of atmospheric planetary boundary layer and its application to sea fog simulation[J].Acta Meteorologica Sinica79(1): 119-131.DOI: 10.11676/qxxb2021.003 .
null
苗世光, 蒋维楣, 李昕, 等, 2001.对流边界层大涡模式的改进及对夹卷速度的研究[J].大气科学25(1): 25-37.DOI: 10.3878/j.issn.1006-9895.2001.01.03.Miao S G
null
Jiang W M Li X, et al, 2001.Improvements of the large eddy simulation models and a study of the entrainment rate[J].Chinese Journal of Atmospheric Sciences25(1): 25-37.DOI: 10.3878/j.issn.1006-9895.2001.01.03 .
null
苏爱芳, 郑永光, 张宁, 等, 2022.边界层辐合线触发深厚湿对流研究进展[J].气象学报80(2): 177-189.DOI: 10.11676/qxxb2022.013.Su A F
null
Zheng Y G Zhang N, et al, 2022.A review of research on boundary convergence lines triggering of deep and moist convection[J].Acta Meteorologica Sinica80(2): 177-189.DOI: 10.11676/qxxb2022.013 .
null
王冠添, 胡泽勇, 孙根厚, 等, 2023.那曲地区不同季节陆面过程与大气边界层演变耦合关系的对比分析[J].高原气象42(1): 197-209.DOI: 10.7522/j.issn.1000-0534.2022.00011.Wang G T
null
Hu T Y Sun G H, et al, 2023.Comparative analysis of coupling relationship between land surface processes and atmospheric boundary layer evolution in Nagqu Area in different seasons[J].Plateau Meteorology42(1): 197-209.DOI: 10.7522/j.issn.1000-0534.2022.00011 .
null
王蓉, 张强, 岳平, 等, 2020.大气边界层数值模拟研究与未来展望[J].地球科学进展35(4): 331.DOI: 10.11867/j.issn.1001-8166.2020.036.Wang R
null
Zhang Q Yue P, et al, 2020.Summary and prospects of numerical simulation research of the atmospheric boundary layer[J].Advances in Earth Science35(4): 331.DOI: 10.11867/j.issn.1001-8166.2020.036 .
null
熊洁, 李俊, 王明欢, 2021.随机参数扰动在一次山地暴雨集合预报中的对比研究[J].气象47(8): 953-965.DOI: 10.7519/j.issn.1000-0526.2021.08.004.Xiong J
null
Li J Wang M H2021.Comparative study of stochastically perturbed parameterization in ensemble forecast of a mountain rainstorm event [J].Meteorological Monthly47(8): 953-965.DOI: 10.7519/j.issn.1000-0526.2021.08.004 .
null
杨玉华, 刘长海, Jimy D, 等, 2016.基于大涡模拟对两类典型边界层参数化方案的评估分析[J].高原气象35(1): 172-180.DOI: 10.7522/j.issn.1000-0534.2014.00138.Yang Y H
null
Liu C H Jimy D, et al, 2016.Evaluation of two typical PBL parameterization schemes based on large-eddy simulation result[J].Plateau Meteorology35(1): 172-180.DOI: 10.7522/j.issn.1000-0534.2014.00138 .
null
张璐, 黄倩, 张宏昇, 等, 2021.干湿地表的湍流特征及其对深对流影响的大涡模拟[J].气象学报79(4): 659-673.DOI: 10.11676/qxxb2021.037.Zhang L
null
Huang Q Zhang H S, et al, 2021.Large eddy simulation of turbulence effects on deep-convection triggering over dry and wet surfaces[J].Acta Meteorologica Sinica79(4): 659-673.DOI: 10.11676/qxxb2021.037 .
null
张美根, 胡非, 邹捍, 等, 2008.大气边界层物理与大气环境过程研究进展[J].大气科学32(4): 923-934.
null
Zhang L Huang Q Zhang H S, et al, 2008.An overview of recent studies on atmospheric boundary layer physics and atmospheric environment in LAPC[J].Chinese Journal of Atmospheric Sciences32(4): 923-934.
null
张强, 王蓉, 岳平, 等, 2017.复杂条件陆-气相互作用研究领域有关科学问题探讨[J].气象学报75(1): 39-56.DOI: 10.11676/qxxb2017.003.Zhang Q
null
Wang R Yue P, et al, 2017.Several scientific issues about the land-atmosphere interaction under complicated conditions[J].Acta Meteorologica Sinica75(1): 39-56.DOI: 10.11676/qxxb2017.003 .
null
张强, 王胜, 2008.西北干旱区夏季大气边界层结构及其陆面过程特征[J].气象学报66(4): 599-608.DOI: 10.3321/j.issn: 0577-6619.2008.04.013.Zhang Q
null
Wang S2008.Several scientific issues about the land-atmosphere interaction under complicated conditions[J].Acta Meteorologica Sinica66(4): 599-608.DOI: 10.3321/j.issn: 0577-6619.2008.04.013 .
null
张敏, 梁捷宁, 张志达, 等, 2022.利用大涡模拟分析地表加热和动力作用对边界层结构的影响[J].高原气象41(5): 1232-1241.DOI: 10.7522/j.issn.1000-0534.2021.00046.Zhang M
null
Liang J N Zhang Z D, et al, 2022.Analyze the surface thermodynamic and dynamic effects on the atmospheric boundary layer structure by large eddy simulation[J].Plateau Meteorology41(5): 1232-1241.DOI: 10.7522/j.issn.1000-0534.2021.00046 .
null
张珊, 王宗敏, 黄刚, 等, 2023.基于WRF-LES的崇礼复杂地形局地风场模拟研究[J].高原气象42(1): 197-209.DOI: 10.7522/j.issn.1000-0534.2022.00011.Zhang S
null
Wang Z M Huang G, et al, 2023.Local wind simulation over complex terrain of Chongli using WRF-LES[J].Plateau Meteorology42(1): 197-209.DOI: 10.7522/j.issn.1000-0534.2022.00011 .
文章导航

/