论文

中南半岛春季气溶胶直接辐射强迫时空演变特征分析

  • 何舒璇 ,
  • 樊雯璇
展开
  • 1. 德宏州气象局,云南 德宏 678400
    2. 云南大学大气科学系,云南 昆明 650091

何舒璇(1997 -), 女, 四川南充人, 硕士研究生, 主要从事气溶胶及其辐射强迫研究. E-mail:

收稿日期: 2022-12-30

  修回日期: 2023-05-16

  网络出版日期: 2023-05-16

基金资助

云南大学研究生科研创新基金项目(2020185); 国家自然科学基金项目(41865001)

Spatial and Temporal Characteristics of Aerosol Direct Radiative Forcing during Spring in the Indo-china Peninsula

  • Shuxuan HE ,
  • Wenxuan FAN
Expand
  • 1. Dehong Meteorological Bureau,Mangshi 678400,Yunnan,China
    2. Department of Atmospheric Sciences,Yunnan University,Kunming 650091,Yunnan,China

Received date: 2022-12-30

  Revised date: 2023-05-16

  Online published: 2023-05-16

摘要

中南半岛国家春季存在大量的生物质燃烧活动, 生成的气溶胶会通过大气环流影响我国西南地区大气辐射收支, 探究其对大气加热率的影响可为研究它对天气和气候的影响提供依据。基于MERRA-2再分析数据中逐时的气溶胶和晴空下的辐射通量等资料, 首先分析其时空特征, 其次利用EOF、 合成分析等统计方法, 讨论中南半岛气溶胶光学厚度(AOD)、 地表气溶胶直接辐射强迫(ADRF)的时空演变特征及其与大气短波加热率的关系。结果表明: (1)在3 -4月生物质燃烧季节, 中南半岛与云南省均存在AOD极大值, 它们的时间序列变化趋势具有较高的一致性, 主要表现为老挝和越南北部地区AOD中心值超过1, 受其影响云南省的AOD由北向南逐渐增强。(2)3 -4月中南半岛生物质燃烧AOD与总AOD的高值中心一致, 说明该区域气溶胶主要来源于生物质燃烧, 老挝北部存在高达28 kg·m-1·d-1的生物质燃烧气溶胶的水平通量散度, 能将气溶胶向东北方向输送至中国。(3)地表ADRF与AOD时空分布存在较高的一致性, 3 -4月老挝和越南的北部地区同样存在地表ADRF高值中心, 其值可达-36 W·m-2。EOF第一模态中, 印度东北角与我国西藏东南部交界处、 老挝、 越南和泰国地区均为正位相区域, 主要在3 -4月出现极大值, 2017 -2018年间极值减弱, 2019年再次增大。云南省地表ADRF时间变化趋势与中南半岛变化一致。(4)地表负ADRF和大气短波加热率的统计关系为: 地表的净辐射通量减少越多, 低层大气吸收短波辐射造成的加热越大, 表明大气内气溶胶截留的短波辐射通量越多, 该现象在700 hPa上最为明显, 尤其是3 -4月。

本文引用格式

何舒璇 , 樊雯璇 . 中南半岛春季气溶胶直接辐射强迫时空演变特征分析[J]. 高原气象, 2024 , 43(4) : 1039 -1051 . DOI: 10.7522/j.issn.1000-0534.2023.00045

Abstract

Frequent biomass-burning activities occur in the Indo-China Peninsula in spring, and the aerosol generated will affect the atmospheric radiation budget of southwest China through the atmospheric circulation.Exploring its influence on the atmospheric heating rate can provide a basis for studying its influence on weather and climate.Based on the MERRA-2 reanalysis data of hourly aerosol and radiation flux under clear sky, their temporal and spatial characteristics were analyzed first.Secondly, using statistical methods such as EOF and synthetic analysis, the temporal and spatial evolution characteristics of aerosol optical thickness (AOD) and surface aerosol direct radiative forcing (ADRF) over the Indo-China Peninsula and their relationship with atmospheric shortwave heating rate were discussed.The results showed that: (1) During the biomass burning season from March to April, there was an extreme value of AOD in the Indo-China Peninsula and Yunnan Province.The time series trend also showed a high consistency.The central value of AOD in Laos and northern Vietnam was more than 1, and the AOD in Yunnan Province gradually increased from north to south due to its influence.(2) The high-value center of biomass combustion AOD in the Indo-China Peninsula from March to April was consistent with that of total AOD, indicating that it was mainly affected by biomass combustion aerosol at this time.The horizontal flux divergence of biomass burning aerosol is as high as 28 kg·m-1·d-1 in northern Laos, which can be transported northeast to China.(3) The spatial and temporal distribution of surface ADRF and AOD showed a high consistency.The high-value center of surface ADRF also existed in the northern part of Laos and Vietnam in March and April, and its value could reach -36 W·m-2.In the spatial distribution of the first mode of surface ADRF in EOF, the northeast corner of India bordering in Tibet of China, Laos, Vietnam and Thailand are all positive phase regions, with maximum values appearing from March to April.The extreme values decreased in 2017 and 2018 and increased again in 2019.The temporal variation trend of surface ADRF in Yunnan Province is consistent with that in the Indo-China Peninsula.(4) The statistical relationship between the negative surface ADRF and the atmospheric shortwave heating rate is as follows: The more the net radiant flux of the surface decreases, the greater the heating caused by the absorption of shortwave radiation by the lower atmosphere, indicating that the more the shortwave radiation flux trapped by the aerosol in the atmosphere, especially at 700 hPa in March and April.

参考文献

null
Chuang M T Lee C T Chou C C K, et al, 2016.Aerosol transport from Chiang Mai, Thailand to Mt.Lulin, Taiwan-Implication of aerosol aging during long-range transport[J].Atmospheric Environment, 137: 101-112.
null
Fu Y F Zhu J Yang Y, et al, 2017.Grid-cell aerosol direct shortwave radiative forc-ing calculated using the SBDART model with MODIS and AERONET observations: an application in winter and summer in eastern China[J].Advances in Atmospheric-ences34(8): 952-964.
null
Gelaro R McCarty W Suárez M J, et al, 2017.The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[J].Journal of Climate30(14): 5419-5454.
null
Huang W R Wang S H Yen M C, et al, 2016.Interannual variation of springtime biomass burning in IndoChina: regional differences, associated atmospheric dynamical changes, and downwind impacts[J].Journal of Geophysical Research: Atmospheres121(17): 10016-10028.
null
IPCC, 2021.Summary for Policymakers.In Climate Change 2021: The Physical Science Basis.Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P.Zhai, A.Pirani, S.L.Connors, C.Péan, S.Berger, N.Caud, Y.Chen, L.Goldfarb, M.I.Gomis, M.Huang, K.Leitzell, E.Lonnoy, J.B.R.Matthews, T.K.Maycock, T.Waterfield, O.Yelek?i, R.Yu and B.Zhou (eds.)].Cambridge University Press.In Press.
null
Kambezidis H D Kaskaoutis D G Kalliampako G K, et al, 2016.The solar dimming/brightening effect over the Mediterranean Basin during the period 1979-2012[J].Journal of Atmospheric and Solar-Terrestrial Physics, 150: 31-46.
null
Khan R Kumar K R Zhao T2019.The climatology of aerosol optical thickness and radiative effects in Southeast Asia from 18-years of ground-based observations[J].Environmental Pollution, 254: 113025.
null
Lakshmi N B Nair V S Babu S S2020.Assessment of the vertical distribution of speciated aerosol absorption over South Asia using spaceborne LIDAR and ground-based observations[J].Remote Sensing of Environment, 253: 112164.
null
Lau K M Kim K M2006.Observational relationships between aerosol and Asian mon-soon rainfall, and circulation[J].Geophysical Research Letters33(21): 320-337.
null
Liao T Gui K Li Y, et al, 2021.Seasonal distribution and vertical structure of different types of aerosols in southwest China observed from CALIOP[J].Atmospheric Environment, 246: 118145.
null
Lin C Y Hsu H M Lee Y H, et al, 2009.A new transport mechanism of biomass burning from IndoChina as identified by modeling studies[J].Atmospheric Chemistry and Physics9(20): 7901-7911.
null
Lin C Y Chun Z Liu X, et al, 2014.Modeling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcing over East Asia[J].Tellus B: Chemical and Physical Meteorology66(1): 23733.
null
Péré J C Mallet M Pont V, et al, 2011.Impact of aerosol direct radiative forcing on the radiative budget, surface heat fluxes, and atmospheric dynamics during the heat wave of summer 2003 over western Europe: a modeling study[J].Journal of Geophysical Research: Atmospheres, 116(D23).DOI: 10.1029/2011JD016240 .
null
Pilewskie P2007.Aerosols heat up[J].Nature448(7153): 541-542.
null
Podgorny I A Conant W Ramanathan V, et al, 2010.Aerosol modulation of atmospheric and surface solar heating over the tropical Indian ocean[J].Tellus52(3): 947-958.
null
Rai M Mahapatra P S Gul C, et al, 2019.Aerosol radiative forcing estimation over a remote high-altitude location (~4900 masl) near Yala Glacier, Nepal[J].Aerosol and Air Quality Research19(8): 1872-1897.
null
Ramanathan V Crutzen P J Kiehl J T, et al, 2001.Aerosols, climate, and the hydrological cycle[J].science294(5549): 2119-2124.
null
Randles C A Sliva A M D Buchard V, et al, 2017.The MERRA-2 Aerosol Reanalysis, 1980 Onward.Part I: System description and data assimilation evaluation[J].Journal of Climate30(17): 6823-6850.
null
Shi S S Zhu B Lu W, et al, 2020.Estimation of radiative forcing and heating rate based on vertical observation of black carbon in Nanjing, China[J].Science of The Total Environment, 756, 144135.
null
Sivan C Manoj M G2019.Aerosol and cloud radiative forcing over various hot spot regions in India[J].Advances in Space Research64(8): 1577-1591.
null
Tripathi S N Srivastava A K Dey S, et al, 2007.The vertical profile of atmospheric heating rate of black carbon aerosols at Kanpur in northern India[J].Atmospheric Environment41(32): 6909-6915.
null
Yu H Kaufman Y J Chin M, et al, 2006.A review of measurement-based assessment of aerosol direct radiative effect and forcing[J].Atmospheric Chemistry and Physics Discussions, 6: 613-666.
null
Zhang L Liao H Li J P2010.Impact of the Southeast Asian summer monsoon strength on the outflow of aerosols from South Asia[C].Annales Geophysicae.Copernicus GmbH, 28(1): 277-287.
null
Zhu J Xia X Che H, et al, 2016.Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma[J].Atmospheric Research, 169: 237-247.
null
Zhu J Yue X Che H, et al, 2022.Contribution of fire emissions to PM2.5 and its transport mechanism over the Yungui Plateau, China during 2015-2019[J].Journal of Geophysical Research: Atmospheres127(12): e2022JD036734.
null
陈林, 石广玉, 王标, 等, 2010.基于卫星观测资料的气溶胶直接辐射强迫研究[C]//北京: 第27届中国气象学会年会应对气候变化分会场——人类发展的永恒主题论文集, 10-25.
null
Chen L Shi G Y Wang B, et al, 2010.Study on aerosol direct radiative forcing Based on Satellite Observations[C]//Beijin: The 27th Annual Meeting of the Chinese Meteorological Society on Climate Change-The Eternal Theme of Human Development, 10-25.
null
邓丛蕊, 2011.中国大气气溶胶中生物质燃烧的源追踪及灰霾的形成机制[D].上海: 复旦大学, 1-140.
null
Deng C R2011.Idengtification of biomass burning source in aerosols and the formation mechanism of haze[D].Shanghai: Fudan University, 1-140.
null
黄建平, 刘玉芝, 王天河, 等, 2021.青藏高原及周边地区气溶胶、 云和水汽收支研究进展[J].高原气象40(6): 1225-1240.DOI: 10.7522/j.issn.1000-0534.2021.zk012.Huang J P
null
Liu Y Z Wang T H, et al, 2021.An overview of the aerosol and cloud properties and water vapor budget over the Qinghai-Xizang Plateau[J].Plateau Meteorology40(6): 1225-1240.DOI: 10.7522/j.issn.1000-0534.2021.zk012 .
null
黄嘉佑, 1990.气象统计分析与预报方法[M].气象出版社, 182-188.
null
Huang J Y1990.Statistic analysis and forecast methods in meteorology[M].China Meteorolagical Press, 182-188.
null
黄文彦, 沈新勇, 王勇, 等, 2015.亚洲地区碳气溶胶的时空特征及其直接气候效应[J].大气科学学报38(4): 448-457.
null
Huang W Y Shen X Y Wang Y, et al, 2015.Spatial-temporal characteristics and direct climate effect of carbon aerosols over Asian area[J].Transactions of Atmospheric Sciences38(4): 448-457.
null
Liou K M2004.大气辐射导论(第2版)[M].北京: 气象出版社.Liou K M, 2004.An introduction to atmospheric radiation(second edition)[M].Beijing: China Meteorolagical Press.
null
蔺惠娟, 李沐阳, 庄炳亮, 等, 2023.中国大陆和印度黑碳气溶胶对东亚冬季气候的影响研究[J].大气科学47(4): 1113-1130.
null
Lin H J Li M Y Zhang B L, et al, 2023.Climate effects of black carbon aerosol from the Mainland of China and India in East Asia in winter[J].Chinese Journal of Atmospheric Sciences47(4): 1113-1130.
null
罗凯, 盛立芳, 2012.东亚气溶胶光学厚度时空变化特征及其对气候可能的影响[J].中国海洋大学学报: 自然科学版42(11): 8-18.
null
Luo, Sheng L F2012.Temporal and spatial variation of aerosol optical depth over East Asia and its probable impact on climate[J].Periodical of Ocean University of China42(11): 8-18.
null
罗燕, 吴涧, 王卫国, 2006.利用MODIS-GOCART气溶胶资料研究中国东部地区气溶胶直接辐射强迫[J].热带气象学报22(6): 638-647.
null
Luo Y Wu J Wang W G2006.Study of the direct radiative forcing in east China with MODIS-GOCART assimilated aerosol optical depth[J].Journal of Tropical Meteorology22(6): 638-647.
null
罗云峰, 周秀骥, 李维亮, 1998.大气气溶胶辐射强迫及气候效应的研究现状[J].地球科学进展13(6): 572-581.
null
Luo Y F Zhou X J Li W L1998.Advances in the study of atmospheric aerosol radiative forcing and climate change[J].Advances in Earth Science13(6): 572-581.
null
倪敏, 郑军, 马嫣, 等, 2016.气溶胶的辐射强迫作用研究进展[J].环境科学与技术 (10): 73-78.Ni M, Zheng J, Ma Y, et al, 2016.Research progress in radiative forcing of aerosol[J].Environmental Science & Technology(10): 73-78.
null
石广玉, 王标, 张华, 等, 2008.大气气溶胶的辐射与气候效应[J].大气科学32(4): 826-840.
null
Shi G Y Wang B Zhang H, et al, 2008.The radiative and climatic effects of atmo spheric aerosols[J].Chinese Journal of Atmospheric Sciences32(4): 826-840.
null
宿兴涛, 王汉杰, 周林, 2010.中国有机碳气溶胶时空分布与辐射强迫的模拟研究[J].热带气象报26(6): 765-772.
null
Su X T Wang H J Zhou L2010.A simulation study on temporal and spatial distribution characteristics and radiative forcing og organic carbon aerosols in China[J].Journal of Tropical Meteorology26(6): 756-772.
null
宿兴涛, 王汉杰, 宋帅, 等, 2011.近10 年东亚沙尘气溶胶辐射强迫与温度响应[J].高原气象30(5): 1300-1307.
null
Su X T Wang H J Song S, et al, 2011.Radiative force and temperature response of dustaerosol over East Asia in recent decade[J].Plateau Meteorology30(5): 1300-1307.
null
吴涧, 符淙斌, 2005.近五年来东亚春季黑炭气溶胶分布输送和辐射效应的模拟研究[J].大气科学29(1): 111-119.
null
Wu J Fu C B2005.Simulation research of distribution transportation and radiative effects of black carbon aerosol in recent five spring seasons over East Asia Region[J].Journal of Atmospheric Sciences29(1): 111-119.
null
王莹, 沈新勇, 王勇, 等, 2012.东亚地区人为气溶胶直接辐射强迫及其气候效应的数值模拟[J].气象科学32(5): 515-525.
null
Wang Y Shen X Y Wang Y, et a1, 2012.Simulation of direct radiation forcing of anthropogenic aerosols and its climate effects over eastern Asia[J].Journal of the Meteorological Sciences32(5): 515-525.
null
徐小红, 余兴, 朱延年, 等, 2021.气溶胶对中国中纬度夏季低层风速的影响[J].高原气象40(2): 367-373.DOI: 10.7522/j.issn.1000-0534.2020.00037.Xu X H
null
Yu X Zhu Y N, et al, 2021.Impact of aerosol on the summer wind speed at the lower layer in the mid-latitude of China[J].Plateau Meteorology40(2): 367-373.DOI: 10.7522/j.issn.1000-0534.2020.00037 .
null
衣娜娜, 张镭, 刘卫平, 等, 2017.西北地区气溶胶光学特性及辐射影响[J].大气科学41(2): 409-420.
null
Yi N N Zhang L Liu W P, et al, 2017.Optical characteristics and radiative effects of atmospheric aerosol over Northwest China [J].Chinese Journal of Atmospheric Sciences41(2): 409-420.
null
张华, 王志立, 2009.黑碳气溶胶气候效应的研究进展[J].气候变化研究进展(6): 311-317.
null
Zhang H Wang Z L2009.Advances in studies of black carbon effects on climate[J].Climate Change Researc (6): 311-317.
null
周茹, 朱君, 2020.东南亚生物质燃烧输送影响我国西南气溶胶辐射特性研究[J].中国环境科学40(4): 1429-1436.
null
Zhou R Zhu J2020.Effects of biomass combustion and transport on aerosol radiation characteristics in Southwest China[J].China Environmental Science40(4): 1429-1436.
null
朱思虹, 张华, 卫晓东, 等, 2018.不同污染条件下气溶胶对短波辐射通量影响的模拟研究[J].气象学报76(5): 790-802.
null
Zhu S H Zhang H Wei X D, et al, 2018.Simulation of aerosol influences on shortwave radiative flux under different pollution conditions [J].Acta Meteorologica Sinica76(5): 790-802.
文章导航

/