收稿日期: 2023-10-30
修回日期: 2024-03-08
网络出版日期: 2024-03-08
基金资助
国家自然科学基金项目(U20A2098); 第二次青藏高原综合科学考察研究项目(2019QZKK0103)
Regional Characteristics and Typical Circulation of Extreme Precipitation in the Warm Season over the Central and Eastern Qinghai-Xizang Plateau
Received date: 2023-10-30
Revised date: 2024-03-08
Online published: 2024-03-08
基于1982 -2020年青藏高原中东部105个气象站点逐日降水资料和NCEP/NCAR再分析资料, 分析了暖季极端降水的时空异常特征、 主要落区和典型环流。结果表明: (1)1982 -2020年, 青藏高原中东部暖季降水总量整体呈显著增加趋势(P<0.05), 气候倾向率达10.7 mm·(10a)-1, 但存在明显的区域性差异和年代际变化特征。极端降水指标在1990s和2000s中后期发生了年代际趋势转变, 2009年之后极端降水的增加最为突出, 气候倾向率可达整体增加水平的4~5倍; 在三个时段, 高原极端降水存在南北趋势反向变化特征, 北部极端降水在1998 -2009年增加最为突出, 南部经历了显著增加-显著减少-显著增加的趋势变化。(2)1982 -2020年,青藏高原中东部暖季小范围极端降水频数呈显著减少趋势(P<0.1), 而大范围极端降水频数显著增加(P<0.05); 4级范围极端降水主要有: 东北部型(A型)、 南部型(B型)和东南部型(C型)三种主要的落区。(3)西太平洋副热带高压(以下简称西太副高)的位置和强度差异是导致水汽源地和大范围极端降水落区不同的主要原因; 当A型大范围极端降水发生时, 西太副高异常偏弱, 偏东, 水汽主要来自太平洋和西风带的输送; 当B型发生时, 西太副高异常偏强, 西伸南压, 水汽主要来自印度洋和孟加拉湾; 当C型发生时, 西太副高异常偏强, 西伸北抬, 水汽主要来自西北太平洋、 南海和孟加拉湾。
李双行 , 王慧 , 李栋梁 , 陈练 , 蒋元春 . 青藏高原中东部暖季极端降水的区域特征及其典型环流[J]. 高原气象, 2024 , 43(6) : 1364 -1379 . DOI: 10.7522/j.issn.1000-0534.2024.00030
Based on NCEP/NCAR reanalysis data and the daily precipitation data from 105 meteorological stations in the central and eastern Qinghai-Xizang Plateau from 1982 to 2020, we investigate the spatiotemporal anomalous characteristics and major falling areas of warm season extreme precipitation and typical circulation of large-scale extreme precipitation in the central and eastern Qinghai-Xizang Plateau.The results show that: (1) Total precipitation of central and eastern Tibetan Plateau in the warm season shows statistically significant increasing at the rate of 10.7 mm·(10a)-1 (P<0.05) during 1982 -2020, but there are obvious interdecadal trend shifts in the late 1990s and late 2000s.The increase in extreme precipitation of central and eastern Qinghai-Xizang Plateau is most prominent after 2009, and the climate tendency rate is of 4~5 times greater than that of during 1982 -2020.In terms of the distribution of spatial climate tendency rates, the trend of extreme precipitation in the southern Qinghai-Xizang Plateau is opposite to that in the central and northern Qinghai-Xizang Plateau in the three periods.The increase of extreme precipitation in the northern Qinghai-Xizang Plateau is the most prominent during 1998 -2009, and the extreme precipitation in the southern Qinghai-Xizang Plateau experiences the interdecadal trend shifts of significant increase, significant decrease and significant increase.(2) The small-scale extreme precipitation in central and eastern Qinghai-Xizang Plateau shows statistically significant decreasing trend (P<0.1), while the large-scale extreme precipitation exhibits statistically significant increasing trend (P<0.05) during 1982 -2020.According to the locations of precipitation center, the level 4 large-scale extreme precipitation can be divided into three types, that is, northeast type (A type), southern type (B type) and southeastern type (C type).(3) The difference of location and intensity of the West Pacific Subtropical High is the main factor, which leads to the difference of water vapor sources and the locations of large-scale extreme precipitation falling areas.When the A-type large-scale extreme precipitation occurs, the West Pacific Subtropical High is anomaly weaker and eastward, which leads to the water vapor mainly transported from the Pacific Ocean and the westerlies.When the B-type occurs, the West Pacific Subtropical High is anomaly stronger and extending westward and southward, consequently, the water vapor mainly transported from the Indian Ocean and the Bay of Bengal.When the C-type occurs, the West Pacific Subtropical High is anomaly stronger, extending from the westward and northward, resulting in the water vapor mainly transported from the northwest Pacific Ocean, the South China Sea and the Bay of Bengal.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 鲍名, 2007. 近 50年我国持续性暴雨的统计分析及其大尺度环流背景[J].大气科学, 31(5): 779-792.DOI: 10.3878/j.issn.1006-9895.2007.05.03.Bao M , 2007.The statistical analysis of the persistent heavy rain in the last 50 years over China and their backgrounds on the large scale circulation[J].Chinese Journal of Atmospheric Sciences, 31(5): 779-792.DOI: 10.3878/j.issn.1006-9895.2007.05.03 . |
null | 曹瑜, 游庆龙, 蔡子怡, 2021.1961—2019年青藏高原中东部夏季强降水与大尺度环流的关系[J].冰川冻土, 43(5): 1290-1300.DOI: 10.7522/j.issn.1000-0240.2021.0083.Cao Y , |
null | |
null | |
null | |
null | 樊星, 秦圆圆, 高翔, 2021.IPCC第六次评估报告第一工作组报告主要结论解读及建议[J].环境保护, 49(Z2): 44-48.DOI: 10.14026/j.cnki.0253-9705.2021.z2.008. Fan X , |
null | |
null | 冯晓莉, 申红艳, 李万志, 等, 2020.1961-2017年青藏高原暖湿季节极端降水时空变化特征[J].高原气象, 39(4): 694-705.DOI: 10.7522/j.issn.1000-0534.2020.00029.Feng X L , |
null | |
null | 巩远发, 许美玲, 何金海, 等, 2006.夏季青藏高原东部降水变化与副热带高压带活动的研究[J].气象学报, (1): 90-99.DOI: 10.11676/qxxb2006.009.Gong Y F , |
null | |
null | 胡亮, 何金海, 高守亭, 2007.华南持续性暴雨的大尺度降水条件分析[J].南京气象学院学报, 30(3): 345-351.DOI: 10.13878/j.cnki.dqkxxb.2007.03.008.Hu L , |
null | |
null | 冀钦, 杨建平, 陈虹举, 2018.1961-2015年青藏高原降水量变化综合分析[J].冰川冻土, 40(6): 1090-1099.DOI: 10.7522/j.issn.1000-0240.2018.0415.Ji Q , |
null | |
null | 雷蕾, 孙继松, 何娜, 等, 2017.“7.20”华北特大暴雨过程中低涡发展演变机制研究[J].气象学报, 75(5): 685-699.DOI: 10.11676/qxxb2017.054.Lei L , |
null | |
null | 李朝月, 崔鹏, 郝建盛, 等, 2023.1960年以来藏东南地区气温和降水的变化特征[J].高原气象, 42(2): 344-358.DOI: 10.7522/j.issn.1000-0534.2022.00010.Li C Y , |
null | |
null | 李生辰, 张青梅, 沈晓燕, 2022.青海高原暴雨的形成条件与基本特征分析[J].高原气象, 41(2): 526-540.DOI: 10.7522/j.issn.1000-0534.2021.00009.Li S C , |
null | |
null | 梁涵洲, 吴其冈, 任雪娟, 等, 2021.观测分析El Ni?o衰减早晚对南亚与青藏高原夏季降水和气温的影响[J].大气科学, 45(4): 777-798.DOI: 10.3878/j.issn.1006-9895.2005.20141.Liang H Z , |
null | |
null | 林厚博, 游庆龙, 焦洋, 等, 2016.青藏高原及附近水汽输送对其夏季降水影响的分析[J].高原气象, 35(2): 309-317.DOI: 10.7522/j.issn.1000-0534.2014.00146.Lin H B , |
null | |
null | 林志强, 薛改萍, 何晓红, 2015.伊朗高压东伸对西藏高原汛期降水的影响[J].气象, 41(2): 153-159.DOI: 10.7519/j.issn.1000-0526.2015.02.003.Lin Z Q , |
null | |
null | 刘俏华, 2021.引发夏季青藏高原南部极端降水的横切变线日变化的特征及其机制[D].北京: 中国气象科学研究院, 8-28.DOI: 10.27631/d.cnki.gzqky.2021.000020.Liu Q H , 2021.Diurnal variation characteristics and mechanisms of the ZSL Inducing extreme precipitation over the southern Tibetan Plateau in boreal summer[D].Beijing: Chinese Academy of Meteorological Sciences, 8-28.DOI: 10.27631/d.cnki.gzqky.2021.000020 . |
null | 刘胜胜, 周顺武, 吴萍, 等, 2021.青藏高原东部冬季降水对北极涛动异常的响应[J].气象学报, 79(4): 558-569.DOI: 10.11676/qxxb2021.034.Liu S S , |
null | |
null | 马伟东, 刘峰贵, 周强, 等, 2020.1961—2017年青藏高原极端降水特征分析[J].自然资源学报, 35(12): 3039-3050.DOI: 10.31497/zrzyxb.20201218.Ma W D , |
null | |
null | 潘保田, 李吉均, 1996.青藏高原: 全球气候变化的驱动机与放大器——Ⅲ.青藏高原隆起对气候变化的影响[J].兰州大学学报: 自然科学版, 32(1): 108-115.DOI: 10.13885/j.issn.0455-2059.1996.01.024.Pan B T , |
null | |
null | 齐冬梅, 李跃清, 周长艳, 等, 2023.1979-2016年青藏高原水汽收支的气候变化特征及其成因[J].冰川冻土, 45(3): 846-864.DOI: 10.7522/j.issn.1000-0240.2023.0065.Qi D M , |
null | |
null | 任芝花, 余予, 邹凤玲, 等, 2012.部分地面要素历史基础气象资料质量检测[J].应用气象学报, 23(6): 739-747. |
null | |
null | 王灏, 胡泽勇, 杨耀先, 等, 2023.近60 年青藏高原季风期降水的南北变化特征及机理研究[J].高原气象, 42(4): 848-857.DOI: 10.7522/j.issn.1000-0534.2023.00034.Wang H , |
null | |
null | 王卫国, 李弘毅, 朱小凡, 等, 2022.1979-2018年青藏高原不同地区积雪季极端降水水汽来源分析[J].高原气象, 41(6): 1367-1383.DOI: 10.7522/j.issn.1000-0534.2021.00080.Wang W G , |
null | |
null | 魏凤英, 2007.现代气候统计诊断与预测技术[M].2版.北京: 气象出版社, 124. |
null | |
null | 姚檀栋, 朱立平, 2006.青藏高原环境变化对全球变化的响应及其适应对策[J].地球科学进展, 21(5): 459-464. |
null | |
null | 周璇, 孙继松, 张琳娜, 等, 2020.华北地区持续性极端暴雨过程的分类特征[J].气象学报, 78(5): 761-777.DOI: 10.11676/qxxb2020.052.Zhou X , |
null | |
null | 朱昌睿, 宋敏红, 张少波, 等, 2023.不同水汽源地对夏季青藏高原降水过程影响的模拟研究[J].高原气象, 42(5): 1129-1143.DOI: 10.7522/j.issn.1000-0534.2022.00092.Zhu C R , |
null | |
null | 朱家宁, 杨显玉, 吕雅琼, 等.2023.中国西南地区干湿年份水汽来源个例对比分析[J].高原气象, 42(6): 1504-1517.DOI: 10.7522/j.issn.1000-0534.2023.00001.Zhu J N , |
null | |
null | 祝传栋, 任荣彩, 2023.夏季南亚高压两类东—西振荡过程的联系及其天气效应对比[J].大气科学, 47(1): 53-69.DOI: 10.3878/j.issn.1006-9895.2106.21075.Zhu C D , |
null |
/
〈 |
|
〉 |