青藏高原中东部暖季极端降水的区域特征及其典型环流

  • 李双行 ,
  • 王慧 ,
  • 李栋梁 ,
  • 陈练 ,
  • 蒋元春
展开
  • 1. 南京信息工程大学大气科学学院/气象灾害预报预警与评估协同创新中心/ 气象灾害教育部重点实验室,江苏 南京 210044
    2. 上海卫星工程研究所,上海 201109

李双行(1999 -), 女, 黑龙江齐齐哈尔人, 硕士研究生, 主要从事青藏高原气候变化及影响研究E-mail:

收稿日期: 2023-10-30

  修回日期: 2024-03-08

  网络出版日期: 2024-03-08

基金资助

国家自然科学基金项目(U20A2098); 第二次青藏高原综合科学考察研究项目(2019QZKK0103)

Regional Characteristics and Typical Circulation of Extreme Precipitation in the Warm Season over the Central and Eastern Qinghai-Xizang Plateau

  • Shuangxing LI ,
  • Hui WANG ,
  • Dongliang LI ,
  • Lian CHEN ,
  • Yuanchun JIANG
Expand
  • 1. Key Laboratory of Meteorological Disaster,Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Joint Center for Data Assimilation Research and Applications,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China
    2. Shanghai Institute of Satellite Engineering,Shanghai 201109,China

Received date: 2023-10-30

  Revised date: 2024-03-08

  Online published: 2024-03-08

摘要

基于1982 -2020年青藏高原中东部105个气象站点逐日降水资料和NCEP/NCAR再分析资料, 分析了暖季极端降水的时空异常特征、 主要落区和典型环流。结果表明: (1)1982 -2020年, 青藏高原中东部暖季降水总量整体呈显著增加趋势(P<0.05), 气候倾向率达10.7 mm·(10a)-1, 但存在明显的区域性差异和年代际变化特征。极端降水指标在1990s和2000s中后期发生了年代际趋势转变, 2009年之后极端降水的增加最为突出, 气候倾向率可达整体增加水平的4~5倍; 在三个时段, 高原极端降水存在南北趋势反向变化特征, 北部极端降水在1998 -2009年增加最为突出, 南部经历了显著增加-显著减少-显著增加的趋势变化。(2)1982 -2020年,青藏高原中东部暖季小范围极端降水频数呈显著减少趋势(P<0.1), 而大范围极端降水频数显著增加(P<0.05); 4级范围极端降水主要有: 东北部型(A型)、 南部型(B型)和东南部型(C型)三种主要的落区。(3)西太平洋副热带高压(以下简称西太副高)的位置和强度差异是导致水汽源地和大范围极端降水落区不同的主要原因; 当A型大范围极端降水发生时, 西太副高异常偏弱, 偏东, 水汽主要来自太平洋和西风带的输送; 当B型发生时, 西太副高异常偏强, 西伸南压, 水汽主要来自印度洋和孟加拉湾; 当C型发生时, 西太副高异常偏强, 西伸北抬, 水汽主要来自西北太平洋、 南海和孟加拉湾。

本文引用格式

李双行 , 王慧 , 李栋梁 , 陈练 , 蒋元春 . 青藏高原中东部暖季极端降水的区域特征及其典型环流[J]. 高原气象, 2024 , 43(6) : 1364 -1379 . DOI: 10.7522/j.issn.1000-0534.2024.00030

Abstract

Based on NCEP/NCAR reanalysis data and the daily precipitation data from 105 meteorological stations in the central and eastern Qinghai-Xizang Plateau from 1982 to 2020, we investigate the spatiotemporal anomalous characteristics and major falling areas of warm season extreme precipitation and typical circulation of large-scale extreme precipitation in the central and eastern Qinghai-Xizang Plateau.The results show that: (1) Total precipitation of central and eastern Tibetan Plateau in the warm season shows statistically significant increasing at the rate of 10.7 mm·(10a)-1P<0.05) during 1982 -2020, but there are obvious interdecadal trend shifts in the late 1990s and late 2000s.The increase in extreme precipitation of central and eastern Qinghai-Xizang Plateau is most prominent after 2009, and the climate tendency rate is of 4~5 times greater than that of during 1982 -2020.In terms of the distribution of spatial climate tendency rates, the trend of extreme precipitation in the southern Qinghai-Xizang Plateau is opposite to that in the central and northern Qinghai-Xizang Plateau in the three periods.The increase of extreme precipitation in the northern Qinghai-Xizang Plateau is the most prominent during 1998 -2009, and the extreme precipitation in the southern Qinghai-Xizang Plateau experiences the interdecadal trend shifts of significant increase, significant decrease and significant increase.(2) The small-scale extreme precipitation in central and eastern Qinghai-Xizang Plateau shows statistically significant decreasing trend (P<0.1), while the large-scale extreme precipitation exhibits statistically significant increasing trend (P<0.05) during 1982 -2020.According to the locations of precipitation center, the level 4 large-scale extreme precipitation can be divided into three types, that is, northeast type (A type), southern type (B type) and southeastern type (C type).(3) The difference of location and intensity of the West Pacific Subtropical High is the main factor, which leads to the difference of water vapor sources and the locations of large-scale extreme precipitation falling areas.When the A-type large-scale extreme precipitation occurs, the West Pacific Subtropical High is anomaly weaker and eastward, which leads to the water vapor mainly transported from the Pacific Ocean and the westerlies.When the B-type occurs, the West Pacific Subtropical High is anomaly stronger and extending westward and southward, consequently, the water vapor mainly transported from the Indian Ocean and the Bay of Bengal.When the C-type occurs, the West Pacific Subtropical High is anomaly stronger, extending from the westward and northward, resulting in the water vapor mainly transported from the northwest Pacific Ocean, the South China Sea and the Bay of Bengal.

参考文献

null
Alexander L V Zhang X Peterson T C, et al, 2006.Global observed changes in daily climate extremes of temperature and precipitation[J].Journal of Geophysical Research, 111: D05109.DOI: 10. 1029/2005JD006290 .
null
Brown P J Bradley R S Keimig F T2010.Changes in extreme climate indices for the Northeastern United States, 1870-2005[J].Journal of Climate23(24): 6555-6572.DOI: 10.1175/2010JCLI3363.1 .
null
Ding Y H1992.Summer monsoon rainfalls in China[J].Journal of the Meteorological Society of Japan70(1B): 373-396.DOI: 10.2151/jmsj1965.70.1B_373 .
null
Donat M G Lowry A L Alexander L V, et al, 2016.More extreme precipitation in the world’s dry and wet regions[J].Nature Climate Change6(5): 508-513.DOI: 10.1038/nclimate2941 .
null
Duan A M Li F Wang M R, et al, 2011.Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon[J].Journal of Climate24(21): 5671-5682.DOI: 10.1175/JCLI-D-11-00052.1 .
null
Feng L Zhou T J2012.Water vapor transport for summer precipitation over the Tibetan Plateau: multidata set analysis[J].Journal of Geophysical Research, 117: D20.DOI: 10.1029/2011JD017012 .
null
Gong X W Wang X Y Li Y Q, et al, 2022.Observed changes in extreme temperature and precipitation indices on the Qinghai-Tibet Plateau, 1960-2016[J].Frontiers in Environmental Science, 10: 888937.DOI: 10.3389/fenvs.2022.888937 .
null
Liu W B Wang L Chen D L, et al, 2016.Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau[J].Climate Dynamics, 46: 3481-3497.DOI: 10.1007/s00382-015-2782-z .
null
Sun J Yao X P Deng G W, et al, 2021.Characteristics and synoptic patterns of regional extreme rainfall over the central and eastern Tibetan Plateau in boreal summer[J].Atmosphere12(3), 379. DOI: 10.3390/atmos12030379 .
null
Tang Y B Gan J J Zhao L, et al, 2006.On the climatology of persistent heavy rainfall events in China[J].Advances in Atmospheric Sciences23(5): 678-692.DOI: 10.1007/s00376-006-0678-x .
null
Tomé A R Miranda P M A2004.Piecewise linear fitting and trend changing points of climate parameters[J].Geophysical Research Letters31(2): L02207.DOI: 10.1029/2003GL019100 .
null
Trenberth K E2010.Changes in precipitation with climate change[J].Climate Research, 47: 123-138.DOI: 10.3354/cr00953 .
null
Wan G N Yang M X Liu Z C, et al, 2017.The precipitation variations in the Qinghai-Xizang (Tibetan) Plateau during 1961-2015[J].Atmosphere8(5): 80.DOI: 10.3390/atmos8050080 .
null
Wang H Zhang J Chen L, et al, 2022.Relationship between summer extreme precipitation anomaly in Central Asia and surface sensible heat variation on the Central-Eastern Tibetan Plateau[J].Climate Dynamics, 59: 685-700.DOI: 10.1007/s00382-022-06148-w .
null
Wu G X Duan A M Liu Y M, et al, 2015.Tibetan Plateau climate dynamics: recent research progress and outlook[J].National Science Review2(1): 100-116. DOI: 10.1093/nsr/nwu045 .
null
Yong Z W Xiong J N Wang Z G, et al, 2021.Relationship of extreme precipitation, surface air temperature, and dew point temperature across the Tibetan Plateau[J].Climatic Change, 165: 41.DOI: 10.1007/s10584-021-03076-2 .
null
You Q L Kang S C Aguilar E, et al, 2008.Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005[J].Journal of Geophysical Research113(D7): 1639-1647.DOI: 10.1029/2007JD009389 .
null
Zhang H X Li W P Li W J2019.Influence of late springtime surface sensible heat flux anomalies over the Tibetan and Iranian Plateaus on the Location of the South Asian High in early summer[J].Advances in Atmospheric Sciences, 36: 93-103.DOI: 10.1007/s00376-018-7296-2 .
null
Zhu X F Wu T H Li R, et al, 2017.Impacts of summer extreme precipitation events on the hydrothermal dynamics of the active layer in the Tanggula permafrost region on the Qinghai-Tibetan Plateau[J].Journal of Geophysical Research-Atmospheres122(21): 11549-11567.DOI: 10.1002/2017JD026736 .
null
鲍名, 2007. 近 50年我国持续性暴雨的统计分析及其大尺度环流背景[J].大气科学, 31(5): 779-792.DOI: 10.3878/j.issn.1006-9895.2007.05.03.Bao M2007.The statistical analysis of the persistent heavy rain in the last 50 years over China and their backgrounds on the large scale circulation[J].Chinese Journal of Atmospheric Sciences, 31(5): 779-792.DOI: 10.3878/j.issn.1006-9895.2007.05.03 .
null
曹瑜, 游庆龙, 蔡子怡, 2021.1961—2019年青藏高原中东部夏季强降水与大尺度环流的关系[J].冰川冻土43(5): 1290-1300.DOI: 10.7522/j.issn.1000-0240.2021.0083.Cao Y
null
You Q L Cai Z Y2021.Relationship between the summer extreme precipitation in the Qinghai-Tibet Plateau and large-scale circulations from 1961 to 2019[J].Journal of Glaciology and Geocryology43(5): 1290-1300.DOI: 10.7522/j.issn.1000-0240.2021.0083 .
null
曹瑜, 游庆龙, 马茜蓉, 2019.青藏高原中东部夏季极端降水年代际变化特征[J].气象科学39(4): 437-445.DOI: 10.3969/2018jms.0077.Cao Y
null
You Q L Ma Q R2019.Interdecadal characteristics of the summer extreme precipitation in the central and eastern Tibetan Plateau[J].Journal of The Meteorological Sciences39(4): 437-445.DOI: 10.3969/2018jms.0077 .
null
樊星, 秦圆圆, 高翔, 2021.IPCC第六次评估报告第一工作组报告主要结论解读及建议[J].环境保护49(Z2): 44-48.DOI: 10.14026/j.cnki.0253-9705.2021.z2.008. Fan X
null
Qin Y Y Gao X2021.Interpretation of the main conclusions and suggestions of IPCC AR6 Working Group Ⅰ Report[J].Environmental Protection49(Z2): 44-48.DOI: 10.14026/j.cnki.0253-9705.2021.z2.008 .
null
冯晓莉, 申红艳, 李万志, 等, 2020.1961-2017年青藏高原暖湿季节极端降水时空变化特征[J].高原气象39(4): 694-705.DOI: 10.7522/j.issn.1000-0534.2020.00029.Feng X L
null
Shen H Y Li W Z, et al, 2020.Spatiotemporal changes for extreme precipitation in wet season over the Qinghai-Tibetan Plateau and the surroundings during 1961-2017[J].Plateau Meteorology39(4): 694-705.DOI: 10.7522/j.issn.1000-0534.2020.00029 .
null
巩远发, 许美玲, 何金海, 等, 2006.夏季青藏高原东部降水变化与副热带高压带活动的研究[J].气象学报, (1): 90-99.DOI: 10.11676/qxxb2006.009.Gong Y F
null
Xu M L He J H, et al, 2006.On the relationship between the eastern Tibet Plateau rainfall and subtropical high shift in summer[J].Acta Meteorological Sinia, (1): 90-99.DOI: 10.11676/qxxb2006.009 .
null
胡亮, 何金海, 高守亭, 2007.华南持续性暴雨的大尺度降水条件分析[J].南京气象学院学报30(3): 345-351.DOI: 10.13878/j.cnki.dqkxxb.2007.03.008.Hu L
null
He J H Gao S T2007.An analysis of large-scale condition for persistent heavy rain in south China[J].Journal of Nanjing Institute of Meteorology30(3): 345-351.DOI: 10.13878/j.cnki.dqkxxb.2007.03.008 .
null
冀钦, 杨建平, 陈虹举, 2018.1961-2015年青藏高原降水量变化综合分析[J].冰川冻土40(6): 1090-1099.DOI: 10.7522/j.issn.1000-0240.2018.0415.Ji Q
null
Yang J P Chen H J2018.Comprehensive analysis of the precipitation changes over the Tibetan Plateau during 1961-2015[J].Journal of Glaciology and Geocryology40(6): 1090-1099.DOI: 10.7522/j.issn.1000-0240.2018.0415 .
null
雷蕾, 孙继松, 何娜, 等, 2017.“7.20”华北特大暴雨过程中低涡发展演变机制研究[J].气象学报75(5): 685-699.DOI: 10.11676/qxxb2017.054.Lei L
null
Sun J S He N, et al, 2017.A study on the mechanism for the vortex system evolution and development during the torrential rain event in North China on 20 July 2016[J].Acta Meteorologica Sinica75(5): 685-699.DOI: 10.11676/qxxb2017.054 .
null
李朝月, 崔鹏, 郝建盛, 等, 2023.1960年以来藏东南地区气温和降水的变化特征[J].高原气象42(2): 344-358.DOI: 10.7522/j.issn.1000-0534.2022.00010.Li C Y
null
Cui P Hao J P, et al, 2023.Variation characteristics of temperature and precipitation over the southeast Xizang since 1960[J].Plateau Meteorology42(2): 344-358.DOI: 10.7522/j.issn.1000-0534.2022.00010 .
null
李生辰, 张青梅, 沈晓燕, 2022.青海高原暴雨的形成条件与基本特征分析[J].高原气象41(2): 526-540.DOI: 10.7522/j.issn.1000-0534.2021.00009.Li S C
null
Zhang Q M Sheng X Y2022.Torrential rain in Qinghai Plateau: forming conditions and characteristics[J].Plateau Meteorology41(2): 526-540.DOI: 10.7522/j.issn.1000-0534.2021.00009 .
null
梁涵洲, 吴其冈, 任雪娟, 等, 2021.观测分析El Ni?o衰减早晚对南亚与青藏高原夏季降水和气温的影响[J].大气科学45(4): 777-798.DOI: 10.3878/j.issn.1006-9895.2005.20141.Liang H Z
null
Wu Q G Ren X J, et al, 2021.Impacts of decay of different El Ni?o types on boreal summer rainfall and surface air temperature in South Asian monsoon region and Tibetan Plateau [J].Chinese Journal of Atmospheric Sciences45(4): 777-798.DOI: 10.3878/j.issn.1006-9895.2005.20141 .
null
林厚博, 游庆龙, 焦洋, 等, 2016.青藏高原及附近水汽输送对其夏季降水影响的分析[J].高原气象35(2): 309-317.DOI: 10.7522/j.issn.1000-0534.2014.00146.Lin H B
null
You Q L Jiao Y, et al, 2016.Water vapor transportation and its influences on precipitation in summer over Qinghai-Xizang Plateau and its surroundings[J].Plateau Meteorology35(2): 309-317.DOI: 10.7522/j.issn.1000-0534.2014.00146 .
null
林志强, 薛改萍, 何晓红, 2015.伊朗高压东伸对西藏高原汛期降水的影响[J].气象41(2): 153-159.DOI: 10.7519/j.issn.1000-0526.2015.02.003.Lin Z Q
null
Xue G P He X H2015.Effects of eastward stretching Iran High on precipitation in rainy season over Tibetan Plateau[J].Meteorological Monthly41(2): 153-159.DOI: 10.7519/j.issn.1000-0526.2015.02.003 .
null
刘俏华, 2021.引发夏季青藏高原南部极端降水的横切变线日变化的特征及其机制[D].北京: 中国气象科学研究院, 8-28.DOI: 10.27631/d.cnki.gzqky.2021.000020.Liu Q H , 2021.Diurnal variation characteristics and mechanisms of the ZSL Inducing extreme precipitation over the southern Tibetan Plateau in boreal summer[D].Beijing: Chinese Academy of Meteorological Sciences, 8-28.DOI: 10.27631/d.cnki.gzqky.2021.000020 .
null
刘胜胜, 周顺武, 吴萍, 等, 2021.青藏高原东部冬季降水对北极涛动异常的响应[J].气象学报79(4): 558-569.DOI: 10.11676/qxxb2021.034.Liu S S
null
Zhou S W Wu P, et al, 2021.Response of winter precipitation in eastern Tibetan Plateau to Arctic Oscillation[J].Acta Meteorologica Sinica79(4): 558-569.DOI: 10.11676/qxxb2021.034 .
null
马伟东, 刘峰贵, 周强, 等, 2020.1961—2017年青藏高原极端降水特征分析[J].自然资源学报35(12): 3039-3050.DOI: 10.31497/zrzyxb.20201218.Ma W D
null
Liu F G Zhou Q, et al, 2020.Characteristics of extreme precipitation over the Qinghai-Tibet Plateau from 1961 to 2017[J].Journal of Natural Resources35(12): 3039-3050.DOI: 10.31497/zrzyxb.20201218 .
null
潘保田, 李吉均, 1996.青藏高原: 全球气候变化的驱动机与放大器——Ⅲ.青藏高原隆起对气候变化的影响[J].兰州大学学报: 自然科学版, 32(1): 108-115.DOI: 10.13885/j.issn.0455-2059.1996.01.024.Pan B T
null
Li J J1996.Qinghai-Tibetan Plateau: A driver and amplifier of the global climatic change.Ⅲ.The effects of Qinghai-Tibetan Plateau on climatic changes[J].Journal Lanzhou University: Natural Sciences, 32(1): 108-115.DOI: 10.13885/j.issn.0455-2059.1996.01.024 .
null
齐冬梅, 李跃清, 周长艳, 等, 2023.1979-2016年青藏高原水汽收支的气候变化特征及其成因[J].冰川冻土45(3): 846-864.DOI: 10.7522/j.issn.1000-0240.2023.0065.Qi D M
null
Li Y Q Zhou C Y, et al, 2023.limate variation characteristics and causes of water vapor budget over the Tibetan Plateau during 1979-2016[J].Journal of Glaciology and Geocryology45(3): 846-864.DOI: 10.7522/j.issn.1000-0240.2023.0065 .
null
任芝花, 余予, 邹凤玲, 等, 2012.部分地面要素历史基础气象资料质量检测[J].应用气象学报23(6): 739-747.
null
Ren Z H Yu Y Zou F L, et al, 2012.Quality detection of surface historical basic meteorological data[J].Journal of Applied Meteorological Science23(6): 739-747.
null
王灏, 胡泽勇, 杨耀先, 等, 2023.近60 年青藏高原季风期降水的南北变化特征及机理研究[J].高原气象42(4): 848-857.DOI: 10.7522/j.issn.1000-0534.2023.00034.Wang H
null
Hu Z Y Yang Y X, et al, 2023.The changing features and the mechanism of the precipitation in Southern-Northern Qinghai-Xizang Plateau during monsoon period in last 60 years[J].Plateau Meteorology42(4): 848-857.DOI: 10.7522/j.issn.1000-0534.2023.00034 .
null
王卫国, 李弘毅, 朱小凡, 等, 2022.1979-2018年青藏高原不同地区积雪季极端降水水汽来源分析[J].高原气象41(6): 1367-1383.DOI: 10.7522/j.issn.1000-0534.2021.00080.Wang W G
null
Li H Y Zhu X F, et al, 2022.The analysis of water vapor sources of extreme precipitation in different subregions of Qinghai-Xizang Plateau during the snow season from 1979 to 2018[J].Plateau Meteorology41(6): 1367-1383.DOI: 10.7522/j.issn.1000-0534.2021.00080 .
null
魏凤英, 2007.现代气候统计诊断与预测技术[M].2版.北京: 气象出版社, 124.
null
Wei F Y2007.Statistical diagnosis and prediction technology of the climate (Ⅱ) [M].Beijing: China Meteorological Press, 124.
null
姚檀栋, 朱立平, 2006.青藏高原环境变化对全球变化的响应及其适应对策[J].地球科学进展21(5): 459-464.
null
Yao T D Zhu L P2006.The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy[J].Advances in Earth Science21(5): 459-464.
null
周璇, 孙继松, 张琳娜, 等, 2020.华北地区持续性极端暴雨过程的分类特征[J].气象学报78(5): 761-777.DOI: 10.11676/qxxb2020.052.Zhou X
null
Sun J S Zhang L N, et al, 2020.Classification characteristics of continuous extreme rainfall events in North China[J].Acta Meteorologica Sinica78(5): 761-777.DOI: 10.11676/qxxb2020.052 .
null
朱昌睿, 宋敏红, 张少波, 等, 2023.不同水汽源地对夏季青藏高原降水过程影响的模拟研究[J].高原气象42(5): 1129-1143.DOI: 10.7522/j.issn.1000-0534.2022.00092.Zhu C R
null
Song M H Zhang S B, et al, 2023.Influence of different water vapor sources on the precipitation processes on the Qinghai-Xizang (Tibet) Plateau in summer[J].Plateau Meteorology42(5): 1129-1143.DOI: 10.7522/j.issn.1000-0534.2022.00092 .
null
朱家宁, 杨显玉, 吕雅琼, 等.2023.中国西南地区干湿年份水汽来源个例对比分析[J].高原气象42(6): 1504-1517.DOI: 10.7522/j.issn.1000-0534.2023.00001.Zhu J N
null
Yang X Y Lu Y Q, et al, 2023.Comparative analysis of individual water vapor sources in dry and wet year in Southwest China[J].Plateau Meteorology42(6): 1504-1517.DOI: 10.7522/j.issn.1000-0534.2023.00001 .
null
祝传栋, 任荣彩, 2023.夏季南亚高压两类东—西振荡过程的联系及其天气效应对比[J].大气科学47(1): 53-69.DOI: 10.3878/j.issn.1006-9895.2106.21075.Zhu C D
null
Ren R C2023.Relationship between two types of east-west oscillations of the South Asia High in summer and their influences on weather[J].Chinese Journal of Atmospheric Sciences47(1): 53-69.DOI: 10.3878/j.issn.1006-9895.2106.21075 .
文章导航

/