综述

WRF-Hydro大气-陆面-水文耦合模式应用研究综述

  • 李振洁 ,
  • 孟宪红 ,
  • 舒乐乐 ,
  • 赵林 ,
  • 李照国 ,
  • 邓明珊 ,
  • 陈亚玲 ,
  • 陈昊
展开
  • 1. 中国科学院西北生态环境资源研究院冰冻圈科学与冻土工程重点实验室,甘肃 兰州 730000
    2. 甘肃省黄河源区气候与环境野外科学观测研究站,甘肃 兰州 730000
    3. 中国科学院大学,北京 100049

李振洁(2000 -), 女, 青海海东人, 硕士研究生, 主要从事陆面过程与气候变化研究. E-mail:

收稿日期: 2023-12-29

  修回日期: 2024-03-15

  网络出版日期: 2024-03-15

基金资助

国家自然科学基金项目(41930759); 中国科学院“西部之光-西部交叉团队”重点实验室专项(xbzg-zdsys-202215)

A Comprehensive Review of the Application Research of the WRF- Hydro Fully Coupled Atmosphere-Land-Hydrology Model

  • Zhenjie LI ,
  • Xianhong MENG ,
  • Lele SHU ,
  • Lin ZHAO ,
  • Zhaoguo LI ,
  • Mingshan DENG ,
  • Yaling CHEN ,
  • Hao CHEN
Expand
  • 1. Key Laboratory of Cryospheric Science and Frozen Soil Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. Field Scientific Observatory for Climate and Environment in the Yellow River Source Region,Lanzhou 730000,Gansu,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2023-12-29

  Revised date: 2024-03-15

  Online published: 2024-03-15

摘要

在人类活动加重气候变暖的背景下, 极端水文气象事件发生概率增加。数值模式作为研究水循环和极端水文事件的有效工具, 已在全球范围内得到广泛应用。为深入理解气候变化背景下全球陆地水循环时空演变规律, 揭示大气-陆面-水文互馈机制, 大气-陆面-水文耦合过程模拟研究已成为国际大气、 水文等学科研究的热点之一。本文首先回顾和梳理了大气-陆面-水文耦合模式的发展历程, 阐明了大气-陆面-水文耦合模式WRF-Hydro(Weather Research and Forecasting Model Hydrological modeling system)的优势, 并系统总结了WRF-Hydro模式的主要敏感性参数分析及模式在对地表径流、 土壤湿度、 能量水分循环以及相关大气和水文过程等方面的应用。最后探讨WRF-Hydro大气-陆面-水文耦合模式未来发展趋势, 提出应着眼于发展有效的尺度转换方案、 完善参数化方案以及开展流域内大气、 水文变量时空分布高分辨率模拟等方面, 以期系统提升耦合模式对大气、 陆面过程及水文过程的刻画能力。

本文引用格式

李振洁 , 孟宪红 , 舒乐乐 , 赵林 , 李照国 , 邓明珊 , 陈亚玲 , 陈昊 . WRF-Hydro大气-陆面-水文耦合模式应用研究综述[J]. 高原气象, 2024 , 43(4) : 809 -825 . DOI: 10.7522/j.issn.1000-0534.2024.00040

Abstract

Numerical models have risen to prominence as indispensable tools for the in-depth study of the water cycle and these extreme hydrological phenomena, gaining widespread application across the globe.To delve into the spatiotemporal evolution patterns of global terrestrial water circulation against the backdrop of climate change and to decipher the intricate feedback mechanisms among atmospheric, land, and hydrological systems, the exploration of coupled atmospheric-land-hydrological models has emerged as a pivotal area of focus in the international research landscape dedicated to atmospheric and hydrological studies.This paper embarks on its journey by meticulously reviewing and delineating the evolution of coupled models, shedding light on the distinct advantages of the Weather Research and Forecasting Model Hydrological (WRF-Hydro) modeling system.It methodically dissects the primary sensitivity parameters of the WRF-Hydro model, while extensively covering its applications in analyzing surface runoff, soil moisture, the energy-water cycle, and the intertwined atmospheric and hydrological processes.The discourse culminates in a forward-looking exploration of the future directions in the development of the WRF-Hydro coupled model.Emphasizing strategic advancements, the paper advocates for a concerted effort towards the creation of robust scale conversion schemes, the refinement of parameterization methods, and the execution of high-resolution simulations.These simulations are crucial for accurately mapping the spatial and temporal dynamics of atmospheric and hydrological variables within basins, thereby significantly enhancing the model's capacity to intricately depict the interactions among atmospheric conditions, land surface phenomena, and hydrological processes.This comprehensive approach underlines the imperative to deepen our understanding and improve our modeling capabilities, aiming at a more effective prediction and management of the impacts arising from climate change and extreme hydrometeorological events.

参考文献

null
Abbott M B Bathurst J C Cunge J A, et al, 1986a.An introduction to the European Hydrological System-Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system[J].Journal of Hydrology87(1/2): 45-59.DOI: 10.1016/0022-1694(86)90114-9 .
null
Allan R P Barlow M Byrne M P, et al, 2020.Advances in understanding large‐scale responses of the water cycle to climate change[J].Annals of the New York Academy of Sciences1472(1): 49-75.DOI: 10.1111/nyas.14337 .
null
Arnault J Fersch B Rummler T, et al, 2021a.Lateral terrestrial water flow contribution to summer precipitation at continental scale-a comparison between Europe and West Africa with WRF‐Hydro‐tag ensembles[J].Hydrological Processes35(5): e14183.DOI: 10.1002/hyp.14183 .
null
Arnault J Jung G Haese B, et al, 2021b.A joint soil‐vegetation‐atmospheric modeling procedure of water isotopologues: implementation and application to different climate zones with WRF‐hydro‐iso[J].Journal of Advances in Modeling Earth Systems13(10): e2021MS002562.DOI: 10.1029/2021MS002562 .
null
Arnault J Rummler T Baur F, et al, 2018.Precipitation sensitivity to the uncertainty of terrestrial water flow in WRF-Hydro: an ensemble analysis for central Europe[J].Journal of Hydrometeorology19(6): 1007-1025.DOI: 10.1175/JHM-D-17-0042.1
null
Arnault J Wagner S Rummler T, et al, 2016.Role of runoff-infiltration partitioning and resolved overland flow on land-atmosphere feedbacks: a case study with the WRF-Hydro coupled modeling system for West Africa[J].Journal of Hydrometeorology17(5): 1489-1516.DOI: 10.1175/JHM-D-15-0089.1 .
null
Blyth E M Arora V K Clark D B, et al, 2021.Advances in land surface modelling[J].Current Climate Change Reports7(2): 45-71.DOI: 10.1007/s40641-021-00171-5 .
null
Budyko M I1974.Climate and life[M].Saint Petersburg: Gidrometeoizdat.
null
Butts M Drews M Larsen M A D, et al, 2014.Embedding complex hydrology in the regional climate system-dynamic coupling across different modelling domains[J].Advances in Water Resources, 74: 166-184.DOI: 10.1016/j.advwatres.2014.09.004 .
null
Crawford N H, Linsley R K1966.Digital simulation in hydrology: stanford watershed model IV[Z].Technical Report No.39, Department of Civil Engineering, Stanford University, p.210.
null
Chahine M T1992.The hydrological cycle and its influence on climate[J].Nature359(6394): 373-380.DOI: 10.1038/359373a0 .
null
Davison J H Hwang H T Sudicky E A, et al, 2018.Full coupling between the atmosphere, surface, and subsurface for integrated hydrologic simulation[J].Journal of Advances in Modeling Earth Systems10(1): 43-53.DOI: 10.1002/2017MS001052 .
null
Fersch B Gochis D J Kunstmann H, et al, 2014.Book of abstracts of the 1st European fully coupled atmospheric-hydrological modeling and WRF-Hydro users workshop[Z].Univ.Calabriaof, RendeCS), Italy.[2023-12-20].Available at http: //cesmma.unical.it/wrf-hydro2104/BookOfAbstracts.pdf.
null
Fersch B Senatore A Adler B, et al, 2020.High-resolution fully coupled atmospheric-hydrological modeling: a cross-compartment regional water and energy cycle evaluation[J].Hydrology and Earth System Sciences24(5): 2457-2481.DOI: 10.5194/hess-2019-478 .
null
Furusho‐Percot C Goergen K Hartick C, et al, 2022.Groundwater model impacts multiannual simulations of heat waves[J].Geophysical Research Letters49(10): e2021GL096781.DOI: 10. 1029/2021GL096781 .
null
Givati A Lynn B Liu Y, et al, 2011.Using the WRF Model in an operational streamflow forecast system for the Jordan River[J].Journal of Applied Meteorology & Climatology51(2): 285-299. DOI: 10.1175/JAMC-D-11-082.1 .
null
Givati A Gochis D Rummler T, et al, 2016.Comparing one-way and two-way coupled hydrometeorological forecasting systems for flood forecasting in the Mediterranean region[J].Hydrology3(2): 19.DOI: 10.3390/hydrology3020019 .
null
Gochis D J, Yu W, Yates D N2013. The WRF-Hydro model technical description and user's guide, version 3.0.NCAR technical document[Z].Available online at https: //ral.ucar.edu/sites/default/files/public/WRF_Hydro_User_Guide_v3.0_CLEAN.pdf.DOI: 10.5065/D6DN43TQ.
null
Gochis D J, Barlage M, Dugger A, et al, 2018.The WRF-Hydro modeling system technical description, (Version 5.0)[Z].NCAR Technical Note, 107.
null
IPCC, 2014.Climate change 2014 synthesis report[J].IPCC: Geneva, Szwitzerland, 2014: 1059-1072.
null
IPCC, 2015.Climate change 2014: mitigation of climate change[M].UK: Cambridge University Press.
null
IPCC, 2018.Special report on global warming of 1.5 ℃[M].UK: Cambridge University Press.
null
Ji P Yuan X2018.High‐resolution land surface modeling of hydrological changes over the Sanjiangyuan Region in the Eastern Tibetan Plateau: 2.impact of climate and land cover change[J].Journal of Advances in Modeling Earth Systems10(11): 2829-2843.DOI: 10.1029/2018MS001413 .
null
Kavvas M L Kure S Chen Z Q, et al, 2013.WEHY-HCM for modeling interactive atmospheric-hydrologic processes at watershed scale.I: model description[J].Journal of Hydrologic Engineering18(10): 1262-1271.DOI: 10.1061/(ASCE)HE.1943-5584.0000724 .
null
Kerandi N Arnault J Laux P, et al, 2018.Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper Tana River basin[J].Theoretical and Applied Climatology, 131: 1337-1355.DOI: 10.1007/s00704-017-2050-8 .
null
Kruk N S Vendrame í F Chou S C2013.Coupling a mesoscale atmospheric model with a distributed hydrological model applied to a watershed in southeast Brazil[J].Journal of Hydrologic Engineering18(1): 58-65.DOI: 10.1061/(ASCE)HE.1943-5584. 0000606 .
null
Lawrence D M Fisher R A Koven C D, et al, 2019.The Community Land Model version 5: description of new features, benchmarking, and impact of forcing uncertainty[J].Journal of Advances in Modeling Earth Systems11(12): 4245-4287.DOI: 10.1029/2018MS001583 .
null
Lesk C Anderson W Rigden A, et al, 2022.Compound heat and moisture extreme impacts on global crop yields under climate change[J].Nature Reviews Earth & Environment3(12): 872-889.DOI: 10.1038/s43017-022-00368-8 .
null
Li G W Meng X H Blyth E, et al, 2021.Impact of fully coupled hydrology-atmosphere processes on atmosphere conditions: investigating the performance of the WRF-Hydro model in the Three River source region on the Tibetan Plateau, China[J].Water13(23): 3409.DOI: 10.3390/w13233409 .
null
Li L Gochis D J Sobolowksi S, et al, 2017.Evaluating the present annual water budget of a Himalayan headwater river basin using a high-resolution atmosphere-hydrology model[J].Journal of Geophysical Research: Atmospheres, 122: 4786-4807.DOI: 10. 1002/2016JD026279 .
null
Liang X Lettenmaier D P Wood E F, et al, 1994.A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J].Journal of Geophysical Research Atmospheres99(D7): 14415-14428.DOI: 10.1029/94JD00483 .
null
Lin P R, Rajib, Yang Z L, et al, 2018.Spatiotemporal evaluation of simulated evapotranspiration and streamflow over Texas using the WRF-Hydro-RAPID Modeling framework[J].Journal of the American Water Resources Association54(1): 40-54.DOI: 10. 1111/1752-1688.12585 .
null
Livneh B Xia Y L Mitchell K E, et al, 2010.Noah LSM snow model diagnostics and enhancements[J].Journal of Hydrometeorology11(3): 721-738.DOI: 10.1175/2009JHM1174.1 .
null
Manabe S1969.Climate and the ocean circulation: I.The atmospheric circulation and the hydrology of the earth's surface[J].Monthly Weather Review97(11): 739-774.DOI: 10.1175/1520-0493(1969)09760; 0739: catoc62; 2.3.co; 2 .
null
Maxwell R M Chow F K Kollet S J2007.The groundwater-land-surface-atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations[J].Advances in Water Resources30(12): 2447-2466.DOI: 10.1016/j.advwatres.2007.05.018 .
null
Maxwell R M Lundquist J K Mirocha J D, et al, 2011.Development of a coupled groundwater-atmosphere model[J].Monthly Weather Review139(1): 96-116.DOI: 10.1175/2010MWR3392.1 .
null
Mascaro G Hussein A Dugger A, et al, 2023.Process‐based calibration of WRF‐Hydro in a mountainous basin in southwestern US[J].Journal of the American Water Resources Association59(1): 49-70.DOI: 10.1111/1752-1688.13076 .
null
Miller J R Russell G L Caliri G1994.Continental-Scale River flow in climate models[J].Journal of Climate7(6): 914-928.DOI: 10.1175/1520-0442(1994)007<0914: CSRFIC>2.0.CO; 2 .
null
M?lders N Raabe A1997.Testing the effect of a two-way-coupling of a meteorological and a hydrologic model on the predicted local weather[J].Journal of Atmospheric Research45(2): 81-107.DOI: 10.1016/S0169-8095(97)00035-5 .
null
Naabil E Lamptey B L Arnault J, et al, 2017.Water resources management using the WRF-Hydro modelling system: case-study of the Tono dam in West Africa[J].Journal of Hydrology (Regional Studies), 12: 196-209.DOI: 10.1016/j.ejrh.2017.05.010 .
null
Naabil E Kouadio K Lamptey B, et al, 2023.Tono basin climate modeling, the potential advantage of fully coupled WRF/WRF-Hydro modeling System[J].Modeling Earth Systems and Environment9(2): 1669-1679.DOI: 10.1007/s40808-022-01574-5 .
null
Neitsch S L, Arnold J G, Kiniry J R, et al, 2011.Soil and water assessment tool theoretical documentation, version 2000, TWRI Report TR-191[Z].Texas Water Resources Institute.
null
Oleson K W Lawrence D M Bonan G B, et al, 2010.Technical description of version 4.0 of the Community Land Model (CLM)[J].NCAR, Climate and Global, 257: 1-257.
null
Overgaard J2005.Energy-based land-surface modelling: new opportunities in integrated hydrological modelling[M].Copenhagen: DTU Environment.
null
Patricola C M Cook K H2005.Dynamics of the West African monsoon under mid-Holocene processional forcing: regional climate model simulations[J].Journal of Climate20(4): 694-716.DOI: 10.1175/JCLI4013.1 .
null
Pitman A J Henderson-Sellers A1998.Recent progress and results from the project for the intercomparison of landsurface parameterization schemes[J].Journal of Hydrology, 212: 128-135.DOI: 10.1016/S0022-1694(98)00206-6 .
null
Quenum G M L D Arnault J Klutse N A B, et al, 2022.Potential of the coupled WRF / WRF-Hydro modeling system for flood forecasting in the Ouémé River (West Africa)[J].Water14(8): 1192.DOI: 10.3390/w14081192 .
null
Rummler T Arnault J Gochis D, et al, 2019.Role of lateral terrestrial water flow on the regional water cycle in a complex terrain region: investigation with a fully coupled model system[J].Journal of Geophysical Research: Atmospheres124(2): 507-529.DOI: 10.1029/2018JD029004 .
null
Ruiz-Barradas A Nigam S2006.IPCC’s twentieth-century climate simulations: Varied representations of North American hydroclimate variability[J].Journal of Climate19(16): 4041-4058.DOI: 10.1175/JCLI3809.1 .
null
Ryu Y Lim Y J Ji H S, et al, 2017.Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula[J].Asia-Pacific Journal of Atmospheric Sciences53(4): 421-430.DOI: 10.1007/s13143-017-0045-0 .
null
Sarkar S Himesh S2021.Evaluation of the Skill of a fully-coupled atmospheric-hydrological model in simulating extreme hydrometeorological event: a case study over Cauvery River Catchment[J].Pure and Applied Geophysics, 178: 1063-1086.DOI: 10. 1007/s00024-021-02684-4 .
null
Schneider S H Dickinson R E1974.Climate modeling[J].Reviews of Geophysics12(3): 447-493.DOI: 10.1029/RG012i003p00447 .
null
Senatore A Mendicino G Gochis D J, et al, 2015.Fully coupled atmosphere-hydrology simulations for the central mediterranean: impact of enhanced hydrological parameterization for short and long time scales[J].Journal of Advances in Modeling Earth Systems7(4): 1693-1715.DOI: 10.1002/2015MS000510 .
null
Seuffert G Gross P Simmer C, et al, 2002.The influence of hydrologic modeling on the predicted local weather: two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model [J].Journal of Hydrometeorology3(5): 505-523.DOI: 10.1175/1525-7541(2002)0032.0.CO; 2 .
null
Shrestha P Sulis M Masbou M, et al, 2014.A scale-consistent terrestrial systems modeling platform based on COSMO, CLM, and ParFlow[J].Monthly Weather Review142(9): 3466-3483.DOI: 10.1175/MWR-D-14-00029.1 .
null
Silver M Karnieli A Ginat H, et al, 2017.An innovative method for determining hydrological calibration parameters for the WRF-Hydro model in arid regions[J].Environmental Modelling & Software, 91: 47-69.DOI: 10.1016/j.envsoft.2017.01.010 .
null
Soltani M Laux P Mauder M, et al, 2019.Inverse distributed modelling of streamflow and turbulent fluxes: a sensitivity and uncertainty analysis coupled with automatic optimization[J].Journal of Hydrology, 571: 856-872.DOI: 10.1016/j.jhydrol.2019.02.033 .
null
Somos-Valenzuela M A Palmer R N2018.Use of WRF-hydro over the northeast of the US to estimate water budget tendencies in small watersheds[J].Water10(12): 1709.DOI: 10.3390/w10121709 .
null
Sun M K Li Z J Yao C, et al, 2020.Evaluation of flood prediction capability of the WRF-hydro model based on multiple forcir[J].Water12(3): 874.DOI: 10.3390/w12030874 .
null
Talebpour M Welty C Bou-Zeid E2021.Development and testing of a fully-coupled subsurface-land surface-atmosphere hydrometeorological model: High-resolution application in urban terrains[J].Urban Climate, 40: 100985.DOI: 10.1016/j.uclim.2021. 100985 .
null
Tian J Y Liu J Yan D H, et al, 2019.Ensemble flood forecasting based on a coupled atmospheric-hydrological modeling system with data assimilation[J].Atmospheric Research, 224: 127-137.DOI: 10.1016/j.atmosres.2019.03.029 .
null
Wagner S Fersch B Yuan F, et al, 2016.Fully coupled atmospheric‐hydrological modeling at regional and long‐term scales: Development, application, and analysis of WRF‐HMS[J].Water Resources Research52(4): 3187-3211.DOI: 10.1002/2015WR018185 .
null
Wang W Liu J Xu B, et al, 2022.A WRF / WRF-Hydro coupling system with an improved structure for rainfall-runoff simulation with mixed runoff generation mechanism[J].Journal of Hydrology, 612: 128049.DOI: 10.1016/j.jhydrol.2022.128049 .
null
Wehbe Y Temimi M Weston M, et al, 2019.Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data[J].Natural Hazards and Earth System Sciences19(6): 1129-1149.DOI: 10.5194/nhess-2018-226 .
null
Wilby R L Wigley T M L2000.Precipitation predictors for downscaling: observed and general circulation model relationships [J].International Journal of Climatology: A Journal of the Royal Meteorological Society20(6): 641-661.DOI: https: //doi.org/10.1002/(SICI)1097-0088(200005)20: 6<641: : AID-JOC501>3.0.CO; 2-1 .
null
Wood E F Lettenmaier D P Zartarian V G1992.A land‐surface hydrology parameterization with subgrid variability for general circulation models[J].Journal of Geophysical Research: Atmospheres97(D3): 2717-2728.
null
Wood E F Roundy J K Troy T J, et al, 2011.Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth's terrestrial water[J].Water Resources Research47(5).DOI: 10.1029/2010WR010090 .
null
Xia Q2019.Development and application of a coupled atmospheric and hydrological modelling system [D].Cologne: Universit?t zu K?ln.
null
Xie Z H Liu S Zeng Y J, et al, 2018.A high‐resolution land model with groundwater lateral flow, water use, and soil freeze‐thaw front dynamics and its applications in an endorheic basin[J].Journal of Geophysical Research: Atmospheres123(14): 7204-7222.DOI: 10.1029/2018JD028369 .
null
Xu Y P Gao X C Zhu Q, et al, 2015.Coupling a regional climate model and a distributed hydrological model to assess future water resources in Jinhua River Basin, East China [J].Journal of Hydrologic Engineering20(4): 04014054.DOI: 10.1061/(ASCE) HE.1943-5584.0001007 .
null
Yu Z B Pollard D Cheng L2006.On continental-scale hydrologic simulations with a coupled hydrologic model [J].Journal of Hydrology331(1/2): 110-124.DOI: 10.1016/j.jhydrol.2006. 05.021 .
null
Yucel I Onen A Yilmaz K K, et al, 2015.Calibration and evaluation of a flood forecasting system: utility of numerical weather prediction model, data assimilation and satellite-based rainfall [J].Journal of Hydrology, 523: 49-66.DOI: 10.1016/j.jhydrol.2015. 01.042 .
null
Zhang Z Y Jo?l A Wagner S, et al, 2019.Impact of lateral terrestrial water flow on land-atmosphere interactions in the Heihe River Basin in China: fully coupled modeling and precipitation recycling analysis [J].Journal of Geophysical Research: Atmospheres124(15): 8401-8423.DOI: 10.1029/2018JD030174 .
null
Zhang Z Y Arnault J Laux P, et al, 2022.Convection-permitting fully coupled WRF-Hydro ensemble simulations in high mountain environment: Impact of boundary layer-and lateral flow parameterizations on land-atmosphere interactions [J].Climate Dynamics59(5): 1355-1376.DOI: 10.1007/s00382-021-06044-9 .
null
Zhao W Li A N2015.A review on land surface processes modelling over complex terrain[J].Advances in Meteorology, 2015: 1-17.DOI: 10.1155/2015/607181 .
null
Zhou S Williams A P Lintner B R, et al, 2022.Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture-atmosphere feedbacks[J].Nature Communications13(1): 5756.DOI: 10.1038/s41467-022-33473-9 .
null
Zou J Xie Z H Yu Y, et al, 2014.Climatic responses to anthropogenic groundwater exploitation: a case study of the Haihe River Basin, Northern China [J].Climate Dynamics42(7): 2125-2145.DOI: 10.1007/s00382-013-1995-2 .
null
都金康, 谢顺平, 许有鹏, 等, 2006.分布式降雨径流物理模型的建立和应用[J].水科学进展17(5): 637-644.
null
Du J K Xie S P Xu Y P, et al, 2006.Development and application of a physically-based distributed rainfall-runoff mode[J].Advances in Water Science17(5): 637-644.
null
胡迎春, 陈耀登, 高玉芳, 等, 2024.基于雷达估测降雨及WRF-Hydro模型的典型山洪模拟研究[J].高原气象43(1): 254-263.DOI: 10.7522/j.issn.1000-0534.2023.00044.Hu Y C
null
Chen Y D Gao Y F, et al, 2024.Simulation study of typical flash floods based on radar-estimated rainfall and WRF-Hydro model[J].Plateau Meteorology43(1): 254-263.DOI: 10.7522/j.issn.1000-0534.2023.00044 .
null
高玉芳, 吴雨晴, 彭涛, 等, 2020.基于不同降水产品的WRF-Hydro模式径流模拟——以漳河流域为例[J].热带气象学报36(3): 299-306.DOI: 10.16032/j.issn.1004-4965.2020.028.Gao Y F
null
Wu Y Q Peng T, et al, 2020.Application of WRF-Hydro for runoff simulation based on different rainfall products: Taking Zhanghe River Basin as an example[J].Journal of Tropical Meteorology36(3): 299-306.DOI: 10.16032/j.issn.1004-4965.2020.028 .
null
贾仰文, 王浩, 2005.分布式流域水文模型原理与实践[M].北京: 中国水利水电出版社.Jia Y W, Wang H, 2005.Principles and Practice of Distributed Hydrological Model[M].Beijing: China Water & Power Press.
null
鞠丽霞, 王会军, 2006.用全球大气环流模式嵌套区域气候模式模拟东亚现代气候[J].地球物理学报49(1): 52-60.DOI: 10.3321/j.issn: 0001-5733.2006.01.008.Ju L X
null
Wang H J2006.Modern climate over East Asia simulated by a regional climate model nested in a global gridpoint general circulation model[J].Chinese Journal of Geophysics49(1): 52-60.DOI: 10.3321/j.issn: 0001-5733.2006.01.008 .
null
刘昱辰, 刘佳, 李传哲, 等, 2019.WRF-Hydro模式在水文模拟与预报应用中的研究进展[J].水电能源科学37(11): 1-5.Liu Y C, Liu J, Li C Z, et al, 2019.Advances of WRF-Hydro and its application in hydrological simulation and forecasting[J].Water Resources and Power, 2019, 37(11): 1-5.
null
罗鹏, 宋星原, 2011.基于栅格式SCS模型的分布式水文模型研究[J].武汉大学学报(工学版)44(2): 156-160.
null
Luo P, and Song X Y2011.A raster-based distributed hydrological model using SCS model[J].Engineering Journal of Wuhan University44(2): 156-160.
null
孟宪红, 陈昊, 李照国, 等, 2020.三江源区气候变化及其环境影响研究综述[J].高原气象39(6): 1133-1143.DOI: 10.7522/j.issn.1000-0534.2019.00144.Meng X H
null
Chen H Li Z G, et al, 2020.Review of climate change and lts environmental influence on the Three-River Regions[J].Plateau Meteorology39(6): 1133-1143.DOI: 10.7522/j.issn.1000-0534.2019.00144 .
null
彭涛, 沈铁元, 高玉芳, 等, 2014.流域水文气象耦合的洪水预报研究及应用进展[J].气象科技进展4(2): 52-58.DOI: 10.3969/j.issn.2095-1973.2014.02.006.Peng T
null
Shen T Y Gao Y f, et al, 2014.Research and application progress on basin hydrometeorology coupling flood forecasting[J].Advances in Meteorological Science and Technology4(2): 52-58.DOI: 10.3969/j.issn.2095-1973.2014.02.006 .
null
粟运, 师春香, 毛文书, 等, 2022.基于CLDAS-Prcp多源融合降水产品的WRF-Hydro模式在綦江流域的水文效用[J].高原气象41(3): 617-629.DOI: 10.7522/j.issn.1000-0534.2021.00073.Su Y
null
Shi C X Mao W S, et al, 2022.Hydrological utility of CLDAS-Prcp multi-source fusion precipitation products in Qijiang River Basin——Taking WRF-Hydro Model as an Example[J].Plateau Meteorology41(3): 617-629.DOI: 10.7522/j.issn.1000-0534.2021.00073 .
null
孙岚, 吴国雄, 2001.陆面蒸散对气候变化的影响[J].中国科学(地球科学)31(1): 59-69.DOI: 10.3321/j.issn: 1006-9267.2001.01.008.Sun L
null
Wu G X2001.lmpact of evapotranspiration of land surface onclimate change[J].Science in China (Earth Sciences)31(1): 59-69.DOI: 10.3321/j.issn: 1006-9267.2001.01.008 .
null
孙明坤, 李致家, 刘志雨, 等, 2020.WRF-Hydro模型与新安江模型在陈河流域的应用对比[J].湖泊科学32(3): 850-864.
null
Sun M K Li Z J Liu Z Y, et al, 2020.Application of WRF-Hydro modeling system in Chenhe Basin and comparison with Xin'anjiang model[J].Journal of Lake Sciences32(3): 850-864.
null
徐宗学, 程磊, 2010.分布式水文模型研究与应用进展[J].水利学报41(9): 1009-1017.DOI: 10.13243/j.cnki.slxb.2010.09.001.Xu Z X
null
Cheng L2010.Progress on studies and applications of the distributed hydrological models[J].Journal of Hydraulic Engineering41(9): 1009-1017.DOI: 10.13243/j.cnki.slxb.2010.09.001 .
null
薛根元, 周锁铨, 孙照渤, 等, 2005.陆面过程研究的新进展[J].科技通报(4): 378-385+395.DOI: 10.13774/j.cnki.kjtb.2005.04.002.Xue G Y
null
Zhou S Q Sun Z B, et al, 2005.Advances in research on land surface processes[J].Chinese Science Bulletin(4): 378-385+395.DOI: 10.13774/j.cnki.kjtb.2005.04.002 .
null
於凡, 曹颖, 2008.全球气候变化对区域水资源影响研究进展综述[J].水资源与水工程学报(4): 92-97+102.
null
Yu F Cao Y2008.Research progress summarization for the impacts of global climate change to the regional water resources[J].Journal of Water Resources and Water Engineering(4): 92-97+102.
null
雍斌, 张万昌, 刘传胜, 2006.水文模型与陆面模式耦合研究进展[J].冰川冻土28(6): 961-970.DOI: 10.3969/j.issn.1000-0240.2006.06.024.Yong B
null
Zhang W C Liu C S2006.Advances in the coupling study of hydrological models and land-surface models[J].Journal of Glaciology and Geocryology28(6): 961-970.DOI: 10.3969/j.issn.1000-0240.2006.06.024 .
null
占车生, 宁理科, 邹靖, 等, 2018.陆面水文-气候耦合模拟研究进展[J].地理学报73(5): 893-905.DOI: 10.11821/dlxb201805009. Zhan C S
null
Ning L K Zou J, et al, 2018.A review on the fully coupled atmosphere-hydrology simulations[J].Journal of Geographical Sciences73(5): 893-905.DOI: 10.11821/dlxb201805009 .
null
张冬峰, 石英, 2012.区域气候模式RegCM3对华北地区未来气候变化的数值模拟[J].地球物理学报55(9): 2854-2866.DOI: 10.6038/j.issn.0001-5733.2012.09.005.Zhang D F
null
Shi Y2012.Numerical simulation of climate changes over North China by the RegCM3 model[J].Chinese Journal of Geophysics55(9): 2854-2866.DOI: 10.6038/j.issn.0001-5733.2012.09.005 .
null
张磊, 王春燕, 潘小多, 2018.基于区域气候模式未来气候变化研究综述[J].高原气象37(5): 1440-1448.DOI: 10.7522/j.issn.1000-0534.2018.00018.Zhang L
null
Wang C Y Pan X D2018.A review of future climate change based on regional climate models[J].Plateau Meteorology37(5): 1440-1448.DOI: 10.7522/j.issn.1000-0534.2018.00018 .
null
张子涵, 王学佳, 杨梅学, 等, 2023.黄河上游水源涵养区近60年关键气候要素的时空变化[J].高原气象42(6): 1372-1385.DOI: 10.7522/j.issn.1000-0534.2023.00011.Zhang Z H
null
Wang X J Yang M X, et al, 2023.Spatio-temporal changes of key climatic elements in the upper Yellow River water conservation area in recent 60 years[J].Plateau Meteorology42(6): 1372-1385.DOI: 10.7522/j.issn.1000-0534.2023.00011 .
null
周天军, 陈梓明, 邹立维, 等, 2020.中国地球气候系统模式的发展及其模拟和预估[J].气象学报78(3): 332-350.DOI: 10.11676/qxxb2020.029.Zhou T J
null
Chen Z M Zou L W, et al, 2020.Development of climate and earth system models in China: Past achievements and new CMIP6 fesults[J].Acta Meteorologica Sinica78(3): 332-350.DOI: 10.11676/qxxb2020.029 .
文章导航

/