null | Abbott M B, Bathurst J C, Cunge J A, et al, 1986a.An introduction to the European Hydrological System-Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system[J]. Journal of Hydrology, 87(1/2): 45-59.DOI: 10.1016/0022-1694(86)90114-9 . |
null | Allan R P, Barlow M, Byrne M P, et al, 2020.Advances in understanding large‐scale responses of the water cycle to climate change[J]. Annals of the New York Academy of Sciences, 1472(1): 49-75.DOI: 10.1111/nyas.14337 . |
null | Arnault J, Fersch B, Rummler T, et al, 2021a.Lateral terrestrial water flow contribution to summer precipitation at continental scale-a comparison between Europe and West Africa with WRF‐Hydro‐tag ensembles[J]. Hydrological Processes, 35(5): e14183.DOI: 10.1002/hyp.14183 . |
null | Arnault J, Jung G, Haese B, et al, 2021b.A joint soil‐vegetation‐atmospheric modeling procedure of water isotopologues: implementation and application to different climate zones with WRF‐hydro‐iso[J]. Journal of Advances in Modeling Earth Systems, 13(10): e2021MS002562.DOI: 10.1029/2021MS002562 . |
null | Arnault J, Rummler T, Baur F, et al, 2018.Precipitation sensitivity to the uncertainty of terrestrial water flow in WRF-Hydro: an ensemble analysis for central Europe[J]. Journal of Hydrometeorology, 19(6): 1007-1025.DOI: 10.1175/JHM-D-17-0042.1 |
null | Arnault J, Wagner S, Rummler T, et al, 2016.Role of runoff-infiltration partitioning and resolved overland flow on land-atmosphere feedbacks: a case study with the WRF-Hydro coupled modeling system for West Africa[J]. Journal of Hydrometeorology, 17(5): 1489-1516.DOI: 10.1175/JHM-D-15-0089.1 . |
null | Blyth E M, Arora V K, Clark D B, et al, 2021.Advances in land surface modelling[J]. Current Climate Change Reports, 7(2): 45-71.DOI: 10.1007/s40641-021-00171-5 . |
null | Budyko M I, 1974.Climate and life[M].Saint Petersburg: Gidrometeoizdat. |
null | Butts M, Drews M, Larsen M A D, et al, 2014.Embedding complex hydrology in the regional climate system-dynamic coupling across different modelling domains[J]. Advances in Water Resources, 74: 166-184.DOI: 10.1016/j.advwatres.2014.09.004 . |
null | Crawford N H, Linsley R K, 1966.Digital simulation in hydrology: stanford watershed model IV[Z].Technical Report No.39, Department of Civil Engineering, Stanford University, p.210. |
null | Chahine M T, 1992.The hydrological cycle and its influence on climate[J]. Nature, 359(6394): 373-380.DOI: 10.1038/359373a0 . |
null | Davison J H, Hwang H T, Sudicky E A, et al, 2018.Full coupling between the atmosphere, surface, and subsurface for integrated hydrologic simulation[J]. Journal of Advances in Modeling Earth Systems, 10(1): 43-53.DOI: 10.1002/2017MS001052 . |
null | Fersch B, Gochis D J, Kunstmann H, et al, 2014.Book of abstracts of the 1st European fully coupled atmospheric-hydrological modeling and WRF-Hydro users workshop[Z].Univ.Calabriaof, RendeCS), Italy.[2023-12-20].Available at http: //cesmma.unical.it/wrf-hydro2104/BookOfAbstracts.pdf. |
null | Fersch B, Senatore A, Adler B, et al, 2020.High-resolution fully coupled atmospheric-hydrological modeling: a cross-compartment regional water and energy cycle evaluation[J]. Hydrology and Earth System Sciences, 24(5): 2457-2481.DOI: 10.5194/hess-2019-478 . |
null | Furusho‐Percot C, Goergen K, Hartick C, et al, 2022.Groundwater model impacts multiannual simulations of heat waves[J]. Geophysical Research Letters, 49(10): e2021GL096781.DOI: 10. 1029/2021GL096781 . |
null | Givati A, Lynn B, Liu Y, et al, 2011.Using the WRF Model in an operational streamflow forecast system for the Jordan River[J]. Journal of Applied Meteorology & Climatology, 51(2): 285-299. DOI: 10.1175/JAMC-D-11-082.1 . |
null | Givati A, Gochis D, Rummler T, et al, 2016.Comparing one-way and two-way coupled hydrometeorological forecasting systems for flood forecasting in the Mediterranean region[J]. Hydrology, 3(2): 19.DOI: 10.3390/hydrology3020019 . |
null | Gochis D J, Yu W, Yates D N, 2013. The WRF-Hydro model technical description and user's guide, version 3.0.NCAR technical document[Z].Available online at https: //ral.ucar.edu/sites/default/files/public/WRF_Hydro_User_Guide_v3.0_CLEAN.pdf.DOI: 10.5065/D6DN43TQ. |
null | Gochis D J, Barlage M, Dugger A, et al, 2018.The WRF-Hydro modeling system technical description, (Version 5.0)[Z].NCAR Technical Note, 107. |
null | IPCC, 2014.Climate change 2014 synthesis report[J].IPCC: Geneva, Szwitzerland, 2014: 1059-1072. |
null | IPCC, 2015.Climate change 2014: mitigation of climate change[M].UK: Cambridge University Press. |
null | IPCC, 2018.Special report on global warming of 1.5 ℃[M].UK: Cambridge University Press. |
null | Ji P, Yuan X, 2018.High‐resolution land surface modeling of hydrological changes over the Sanjiangyuan Region in the Eastern Tibetan Plateau: 2.impact of climate and land cover change[J]. Journal of Advances in Modeling Earth Systems, 10(11): 2829-2843.DOI: 10.1029/2018MS001413 . |
null | Kavvas M L, Kure S, Chen Z Q, et al, 2013.WEHY-HCM for modeling interactive atmospheric-hydrologic processes at watershed scale.I: model description[J]. Journal of Hydrologic Engineering, 18(10): 1262-1271.DOI: 10.1061/(ASCE)HE.1943-5584.0000724 . |
null | Kerandi N, Arnault J, Laux P, et al, 2018.Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper Tana River basin[J]. Theoretical and Applied Climatology, 131: 1337-1355.DOI: 10.1007/s00704-017-2050-8 . |
null | Kruk N S, Vendrame í F, Chou S C, 2013.Coupling a mesoscale atmospheric model with a distributed hydrological model applied to a watershed in southeast Brazil[J]. Journal of Hydrologic Engineering, 18(1): 58-65.DOI: 10.1061/(ASCE)HE.1943-5584. 0000606 . |
null | Lawrence D M, Fisher R A, Koven C D, et al, 2019.The Community Land Model version 5: description of new features, benchmarking, and impact of forcing uncertainty[J]. Journal of Advances in Modeling Earth Systems, 11(12): 4245-4287.DOI: 10.1029/2018MS001583 . |
null | Lesk C, Anderson W, Rigden A, et al, 2022.Compound heat and moisture extreme impacts on global crop yields under climate change[J]. Nature Reviews Earth & Environment, 3(12): 872-889.DOI: 10.1038/s43017-022-00368-8 . |
null | Li G W, Meng X H, Blyth E, et al, 2021.Impact of fully coupled hydrology-atmosphere processes on atmosphere conditions: investigating the performance of the WRF-Hydro model in the Three River source region on the Tibetan Plateau, China[J]. Water, 13(23): 3409.DOI: 10.3390/w13233409 . |
null | Li L, Gochis D J, Sobolowksi S, et al, 2017.Evaluating the present annual water budget of a Himalayan headwater river basin using a high-resolution atmosphere-hydrology model[J]. Journal of Geophysical Research: Atmospheres, 122: 4786-4807.DOI: 10. 1002/2016JD026279 . |
null | Liang X, Lettenmaier D P, Wood E F, et al, 1994.A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J]. Journal of Geophysical Research Atmospheres, 99(D7): 14415-14428.DOI: 10.1029/94JD00483 . |
null | Lin P R, Rajib, Yang Z L, et al, 2018.Spatiotemporal evaluation of simulated evapotranspiration and streamflow over Texas using the WRF-Hydro-RAPID Modeling framework[J]. Journal of the American Water Resources Association, 54(1): 40-54.DOI: 10. 1111/1752-1688.12585 . |
null | Livneh B, Xia Y L, Mitchell K E, et al, 2010.Noah LSM snow model diagnostics and enhancements[J]. Journal of Hydrometeorology, 11(3): 721-738.DOI: 10.1175/2009JHM1174.1 . |
null | |
null | Maxwell R M, Chow F K, Kollet S J, 2007.The groundwater-land-surface-atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations[J]. Advances in Water Resources, 30(12): 2447-2466.DOI: 10.1016/j.advwatres.2007.05.018 . |
null | Maxwell R M, Lundquist J K, Mirocha J D, et al, 2011.Development of a coupled groundwater-atmosphere model[J]. Monthly Weather Review, 139(1): 96-116.DOI: 10.1175/2010MWR3392.1 . |
null | Mascaro G, Hussein A, Dugger A, et al, 2023.Process‐based calibration of WRF‐Hydro in a mountainous basin in southwestern US[J]. Journal of the American Water Resources Association, 59(1): 49-70.DOI: 10.1111/1752-1688.13076 . |
null | |
null | M?lders N, Raabe A, 1997.Testing the effect of a two-way-coupling of a meteorological and a hydrologic model on the predicted local weather[J]. Journal of Atmospheric Research, 45(2): 81-107.DOI: 10.1016/S0169-8095(97)00035-5 . |
null | Naabil E, Lamptey B L, Arnault J, et al, 2017.Water resources management using the WRF-Hydro modelling system: case-study of the Tono dam in West Africa[J]. Journal of Hydrology (Regional Studies), 12: 196-209.DOI: 10.1016/j.ejrh.2017.05.010 . |
null | Naabil E, Kouadio K, Lamptey B, et al, 2023.Tono basin climate modeling, the potential advantage of fully coupled WRF/WRF-Hydro modeling System[J]. Modeling Earth Systems and Environment, 9(2): 1669-1679.DOI: 10.1007/s40808-022-01574-5 . |
null | Neitsch S L, Arnold J G, Kiniry J R, et al, 2011.Soil and water assessment tool theoretical documentation, version 2000, TWRI Report TR-191[Z].Texas Water Resources Institute. |
null | Oleson K W, Lawrence D M, Bonan G B, et al, 2010.Technical description of version 4.0 of the Community Land Model (CLM)[J].NCAR, Climate and Global, 257: 1-257. |
null | Overgaard J, 2005.Energy-based land-surface modelling: new opportunities in integrated hydrological modelling[M].Copenhagen: DTU Environment. |
null | Patricola C M, Cook K H, 2005.Dynamics of the West African monsoon under mid-Holocene processional forcing: regional climate model simulations[J]. Journal of Climate, 20(4): 694-716.DOI: 10.1175/JCLI4013.1 . |
null | Pitman A J, Henderson-Sellers A, 1998.Recent progress and results from the project for the intercomparison of landsurface parameterization schemes[J]. Journal of Hydrology, 212: 128-135.DOI: 10.1016/S0022-1694(98)00206-6 . |
null | Quenum G M L D, Arnault J, Klutse N A B, et al, 2022.Potential of the coupled WRF / WRF-Hydro modeling system for flood forecasting in the Ouémé River (West Africa)[J]. Water, 14(8): 1192.DOI: 10.3390/w14081192 . |
null | Rummler T, Arnault J, Gochis D, et al, 2019.Role of lateral terrestrial water flow on the regional water cycle in a complex terrain region: investigation with a fully coupled model system[J]. Journal of Geophysical Research: Atmospheres, 124(2): 507-529.DOI: 10.1029/2018JD029004 . |
null | Ruiz-Barradas A, Nigam S, 2006.IPCC’s twentieth-century climate simulations: Varied representations of North American hydroclimate variability[J]. Journal of Climate, 19(16): 4041-4058.DOI: 10.1175/JCLI3809.1 . |
null | Ryu Y, Lim Y J, Ji H S, et al, 2017.Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula[J]. Asia-Pacific Journal of Atmospheric Sciences, 53(4): 421-430.DOI: 10.1007/s13143-017-0045-0 . |
null | Sarkar S, Himesh S, 2021.Evaluation of the Skill of a fully-coupled atmospheric-hydrological model in simulating extreme hydrometeorological event: a case study over Cauvery River Catchment[J]. Pure and Applied Geophysics, 178: 1063-1086.DOI: 10. 1007/s00024-021-02684-4 . |
null | Schneider S H, Dickinson R E, 1974.Climate modeling[J]. Reviews of Geophysics, 12(3): 447-493.DOI: 10.1029/RG012i003p00447 . |
null | Senatore A, Mendicino G, Gochis D J, et al, 2015.Fully coupled atmosphere-hydrology simulations for the central mediterranean: impact of enhanced hydrological parameterization for short and long time scales[J]. Journal of Advances in Modeling Earth Systems, 7(4): 1693-1715.DOI: 10.1002/2015MS000510 . |
null | Seuffert G, Gross P, Simmer C, et al, 2002.The influence of hydrologic modeling on the predicted local weather: two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model [J]. Journal of Hydrometeorology, 3(5): 505-523.DOI: 10.1175/1525-7541(2002)0032.0.CO; 2 . |
null | Shrestha P, Sulis M, Masbou M, et al, 2014.A scale-consistent terrestrial systems modeling platform based on COSMO, CLM, and ParFlow[J]. Monthly Weather Review, 142(9): 3466-3483.DOI: 10.1175/MWR-D-14-00029.1 . |
null | Silver M, Karnieli A, Ginat H, et al, 2017.An innovative method for determining hydrological calibration parameters for the WRF-Hydro model in arid regions[J]. Environmental Modelling & Software, 91: 47-69.DOI: 10.1016/j.envsoft.2017.01.010 . |
null | Soltani M, Laux P, Mauder M, et al, 2019.Inverse distributed modelling of streamflow and turbulent fluxes: a sensitivity and uncertainty analysis coupled with automatic optimization[J]. Journal of Hydrology, 571: 856-872.DOI: 10.1016/j.jhydrol.2019.02.033 . |
null | Somos-Valenzuela M A, Palmer R N, 2018.Use of WRF-hydro over the northeast of the US to estimate water budget tendencies in small watersheds[J]. Water, 10(12): 1709.DOI: 10.3390/w10121709 . |
null | Sun M K, Li Z J, Yao C, et al, 2020.Evaluation of flood prediction capability of the WRF-hydro model based on multiple forcir[J]. Water, 12(3): 874.DOI: 10.3390/w12030874 . |
null | Talebpour M, Welty C, Bou-Zeid E, 2021.Development and testing of a fully-coupled subsurface-land surface-atmosphere hydrometeorological model: High-resolution application in urban terrains[J]. Urban Climate, 40: 100985.DOI: 10.1016/j.uclim.2021. 100985 . |
null | Tian J Y, Liu J, Yan D H, et al, 2019.Ensemble flood forecasting based on a coupled atmospheric-hydrological modeling system with data assimilation[J]. Atmospheric Research, 224: 127-137.DOI: 10.1016/j.atmosres.2019.03.029 . |
null | Wagner S, Fersch B, Yuan F, et al, 2016.Fully coupled atmospheric‐hydrological modeling at regional and long‐term scales: Development, application, and analysis of WRF‐HMS[J]. Water Resources Research, 52(4): 3187-3211.DOI: 10.1002/2015WR018185 . |
null | Wang W, Liu J, Xu B, et al, 2022.A WRF / WRF-Hydro coupling system with an improved structure for rainfall-runoff simulation with mixed runoff generation mechanism[J]. Journal of Hydrology, 612: 128049.DOI: 10.1016/j.jhydrol.2022.128049 . |
null | Wehbe Y, Temimi M, Weston M, et al, 2019.Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data[J]. Natural Hazards and Earth System Sciences, 19(6): 1129-1149.DOI: 10.5194/nhess-2018-226 . |
null | |
null | Wood E F, Lettenmaier D P, Zartarian V G, 1992.A land‐surface hydrology parameterization with subgrid variability for general circulation models[J].Journal of Geophysical Research: Atmospheres, 97(D3): 2717-2728. |
null | Wood E F, Roundy J K, Troy T J, et al, 2011.Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth's terrestrial water[J]. Water Resources Research, 47(5).DOI: 10.1029/2010WR010090 . |
null | Xia Q, 2019.Development and application of a coupled atmospheric and hydrological modelling system [D].Cologne: Universit?t zu K?ln. |
null | Xie Z H, Liu S, Zeng Y J, et al, 2018.A high‐resolution land model with groundwater lateral flow, water use, and soil freeze‐thaw front dynamics and its applications in an endorheic basin[J]. Journal of Geophysical Research: Atmospheres, 123(14): 7204-7222.DOI: 10.1029/2018JD028369 . |
null | Xu Y P, Gao X C, Zhu Q, et al, 2015.Coupling a regional climate model and a distributed hydrological model to assess future water resources in Jinhua River Basin, East China [J]. Journal of Hydrologic Engineering, 20(4): 04014054.DOI: 10.1061/(ASCE) HE.1943-5584.0001007 . |
null | Yu Z B, Pollard D, Cheng L, 2006.On continental-scale hydrologic simulations with a coupled hydrologic model [J]. Journal of Hydrology, 331(1/2): 110-124.DOI: 10.1016/j.jhydrol.2006. 05.021 . |
null | Yucel I, Onen A, Yilmaz K K, et al, 2015.Calibration and evaluation of a flood forecasting system: utility of numerical weather prediction model, data assimilation and satellite-based rainfall [J]. Journal of Hydrology, 523: 49-66.DOI: 10.1016/j.jhydrol.2015. 01.042 . |
null | Zhang Z Y, Jo?l A, Wagner S, et al, 2019.Impact of lateral terrestrial water flow on land-atmosphere interactions in the Heihe River Basin in China: fully coupled modeling and precipitation recycling analysis [J]. Journal of Geophysical Research: Atmospheres, 124(15): 8401-8423.DOI: 10.1029/2018JD030174 . |
null | Zhang Z Y, Arnault J, Laux P, et al, 2022.Convection-permitting fully coupled WRF-Hydro ensemble simulations in high mountain environment: Impact of boundary layer-and lateral flow parameterizations on land-atmosphere interactions [J]. Climate Dynamics, 59(5): 1355-1376.DOI: 10.1007/s00382-021-06044-9 . |
null | Zhao W, Li A N, 2015.A review on land surface processes modelling over complex terrain[J]. Advances in Meteorology, 2015: 1-17.DOI: 10.1155/2015/607181 . |
null | Zhou S, Williams A P, Lintner B R, et al, 2022.Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture-atmosphere feedbacks[J]. Nature Communications, 13(1): 5756.DOI: 10.1038/s41467-022-33473-9 . |
null | Zou J, Xie Z H, Yu Y, et al, 2014.Climatic responses to anthropogenic groundwater exploitation: a case study of the Haihe River Basin, Northern China [J]. Climate Dynamics, 42(7): 2125-2145.DOI: 10.1007/s00382-013-1995-2 . |
null | 都金康, 谢顺平, 许有鹏, 等, 2006.分布式降雨径流物理模型的建立和应用[J].水科学进展, 17(5): 637-644. |
null | Du J K, Xie S P, Xu Y P, et al, 2006.Development and application of a physically-based distributed rainfall-runoff mode[J].Advances in Water Science, 17(5): 637-644. |
null | |
null | Chen Y D, Gao Y F, et al, 2024.Simulation study of typical flash floods based on radar-estimated rainfall and WRF-Hydro model[J]. Plateau Meteorology, 43(1): 254-263.DOI: 10.7522/j.issn.1000-0534.2023.00044 . |
null | |
null | Wu Y Q, Peng T, et al, 2020.Application of WRF-Hydro for runoff simulation based on different rainfall products: Taking Zhanghe River Basin as an example[J]. Journal of Tropical Meteorology, 36(3): 299-306.DOI: 10.16032/j.issn.1004-4965.2020.028 . |
null | 贾仰文, 王浩, 2005.分布式流域水文模型原理与实践[M].北京: 中国水利水电出版社.Jia Y W, Wang H, 2005.Principles and Practice of Distributed Hydrological Model[M].Beijing: China Water & Power Press. |
null | |
null | Wang H J, 2006.Modern climate over East Asia simulated by a regional climate model nested in a global gridpoint general circulation model[J]. Chinese Journal of Geophysics, 49(1): 52-60.DOI: 10.3321/j.issn: 0001-5733.2006.01.008 . |
null | 刘昱辰, 刘佳, 李传哲, 等, 2019.WRF-Hydro模式在水文模拟与预报应用中的研究进展[J].水电能源科学, 37(11): 1-5.Liu Y C, Liu J, Li C Z, et al, 2019.Advances of WRF-Hydro and its application in hydrological simulation and forecasting[J].Water Resources and Power, 2019, 37(11): 1-5. |
null | 罗鹏, 宋星原, 2011.基于栅格式SCS模型的分布式水文模型研究[J].武汉大学学报(工学版), 44(2): 156-160. |
null | Luo P, and Song X Y, 2011.A raster-based distributed hydrological model using SCS model[J].Engineering Journal of Wuhan University, 44(2): 156-160. |
null | |
null | Chen H, Li Z G, et al, 2020.Review of climate change and lts environmental influence on the Three-River Regions[J]. Plateau Meteorology, 39(6): 1133-1143.DOI: 10.7522/j.issn.1000-0534.2019.00144 . |
null | |
null | Shen T Y, Gao Y f, et al, 2014.Research and application progress on basin hydrometeorology coupling flood forecasting[J]. Advances in Meteorological Science and Technology, 4(2): 52-58.DOI: 10.3969/j.issn.2095-1973.2014.02.006 . |
null | |
null | Shi C X, Mao W S, et al, 2022.Hydrological utility of CLDAS-Prcp multi-source fusion precipitation products in Qijiang River Basin——Taking WRF-Hydro Model as an Example[J]. Plateau Meteorology, 41(3): 617-629.DOI: 10.7522/j.issn.1000-0534.2021.00073 . |
null | |
null | |
null | 孙明坤, 李致家, 刘志雨, 等, 2020.WRF-Hydro模型与新安江模型在陈河流域的应用对比[J].湖泊科学, 32(3): 850-864. |
null | Sun M K, Li Z J, Liu Z Y, et al, 2020.Application of WRF-Hydro modeling system in Chenhe Basin and comparison with Xin'anjiang model[J].Journal of Lake Sciences, 32(3): 850-864. |
null | |
null | Cheng L, 2010.Progress on studies and applications of the distributed hydrological models[J]. Journal of Hydraulic Engineering, 41(9): 1009-1017.DOI: 10.13243/j.cnki.slxb.2010.09.001 . |
null | |
null | Zhou S Q, Sun Z B, et al, 2005.Advances in research on land surface processes[J]. Chinese Science Bulletin(4): 378-385+395.DOI: 10.13774/j.cnki.kjtb.2005.04.002 . |
null | 於凡, 曹颖, 2008.全球气候变化对区域水资源影响研究进展综述[J].水资源与水工程学报(4): 92-97+102. |
null | Yu F, Cao Y, 2008.Research progress summarization for the impacts of global climate change to the regional water resources[J].Journal of Water Resources and Water Engineering(4): 92-97+102. |
null | |
null | Zhang W C, Liu C S, 2006.Advances in the coupling study of hydrological models and land-surface models[J]. Journal of Glaciology and Geocryology, 28(6): 961-970.DOI: 10.3969/j.issn.1000-0240.2006.06.024 . |
null | |
null | Ning L K, Zou J, et al, 2018.A review on the fully coupled atmosphere-hydrology simulations[J]. Journal of Geographical Sciences, 73(5): 893-905.DOI: 10.11821/dlxb201805009 . |
null | |
null | Shi Y, 2012.Numerical simulation of climate changes over North China by the RegCM3 model[J]. Chinese Journal of Geophysics, 55(9): 2854-2866.DOI: 10.6038/j.issn.0001-5733.2012.09.005 . |
null | |
null | |
null | |
null | Wang X J, Yang M X, et al, 2023.Spatio-temporal changes of key climatic elements in the upper Yellow River water conservation area in recent 60 years[J]. Plateau Meteorology, 42(6): 1372-1385.DOI: 10.7522/j.issn.1000-0534.2023.00011 . |
null | |
null | Chen Z M, Zou L W, et al, 2020.Development of climate and earth system models in China: Past achievements and new CMIP6 fesults[J]. Acta Meteorologica Sinica, 78(3): 332-350.DOI: 10.11676/qxxb2020.029 . |