1961 -2021年青海省风光水气候要素和资源时空变化特征

  • 段美霞 ,
  • 高妙妮 ,
  • 姜涵 ,
  • 徐润宏 ,
  • 苏布达 ,
  • 姜彤
展开
  • 1. 南京信息工程大学地理科学学院/灾害风险管理研究院,江苏 南京 210044
    2. 南京信息工程大学气候与环境治理研究院,江苏 南京 210044
    3. 青海师范大学地理科学学院,青海 西宁 810008

段美霞(1999 -), 女, 山东淄博人, 硕士, 主要从事气候变化研究. E-mail:

收稿日期: 2023-08-10

  修回日期: 2024-03-20

  网络出版日期: 2024-03-20

基金资助

青海省科学技术厅青海省重点研发与转化计划项目(2022-SF-173)

Spatiotemporal Change in Climate Variables and Resources of Wind, Solar Radiation and Precipitation in Qinghai Province from 1961 to 2021

  • Meixia DUAN ,
  • Miaoni GAO ,
  • Han JIANG ,
  • Runhong XU ,
  • buda SU ,
  • Tong JIANG
Expand
  • 1. School of Geographical Science/Institute of Disaster Risk Management,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China
    2. Institute of Climate and Environmental Governance,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China
    3. School of Geography,Qinghai Normal University,Xining 810008,Qinghai,China

Received date: 2023-08-10

  Revised date: 2024-03-20

  Online published: 2024-03-20

摘要

为系统评估青海省风光水气候要素在清洁能源开发和保障方面的潜力, 本研究基于1961 -2021年青海省境内51个气象站点的逐日10 m高度风速、 日照时数及降水观测资料, 分析了青海全年及四季风、 光、 水气候要素和相关资源的时空变化特征。研究发现: (1)青海省年平均风速、 太阳辐射和降水量分别为2.67 m·s-1、 6084.2 MJ·m-2和299.7 mm。风速总体呈现西部大、 东部小的特点, 青海西部及青海湖环湖等地区风速超过3 m·s-1, 达到风能资源开发标准。全境年太阳辐射均超过5040 MJ·m-2, 达国标“很丰富”等级, 柴达木盆地达“最丰富”等级, 适宜太阳能资源开发。降水量自东南向西北递减。青海省的风、 光、 水资源存在季节互补性, 呈现出“春季风大、 光好、 水少, 夏季风小、 光好、 水丰”的规律。(2)在气候变化背景下, 青海省年平均风速和年总太阳辐射以0.16 m·s-1·(10a)-1和29.04 MJ·m-2·(10a)-1的速率显著降低, 海西西部和中部地区变化幅度最大, 但仍维持在风能和光伏资源开发标准范围内。降水量以8.85 mm·(10a)-1的速率显著增多, 玉树西部、 海西东部等地区增幅最大。春季风速降低最显著, 夏季太阳辐射减小速率最快但降水大幅增加。总云量增多是太阳辐射和降水变化的可能原因。(3)青海风速和太阳辐射达到适宜开发标准的地区受影响较小且极端性减弱, 可保障清洁能源稳定开发。青海西部(如唐古拉山)的风能资源、 柴达木盆地的太阳能资源、 长江、 黄河和澜沧江三大流域的水能资源仍具有较大开发潜力。本研究结果可为发展风光水多能互补清洁能源开发提供理论依据, 助力国家“双碳”目标的实现和青海省高质量发展。

本文引用格式

段美霞 , 高妙妮 , 姜涵 , 徐润宏 , 苏布达 , 姜彤 . 1961 -2021年青海省风光水气候要素和资源时空变化特征[J]. 高原气象, 2024 , 43(6) : 1614 -1629 . DOI: 10.7522/j.issn.1000-0534.2024.00041

Abstract

In order to evaluate the potential of wind, solar radiation and precipitation in guaranteeing the development of clean energy comprehensively, this study analyzed the temporal and spatial changes in climate variables and resources of wind speed, solar radiation and precipitation in Qinghai Province throughout the year and four seasons from 1961 to 2021 based on the observation data of daily 10-meter-height wind speed, sunshine duration and precipitation at 51 meteorological stations.The results are as follows: (1) The annual average wind speed, solar radiation and precipitation in Qinghai Province are 2.67 m·s-1, 6084.2 MJ·m-2, and 299.7 mm, respectively.Wind speed tends to be higher in the western regions and lower in the east, which exceeds 3 m/s and reaches the standard for wind energy resource development in western Qinghai.The annual solar radiation in the entire Province exceeds 5040 MJ·m-2, and reaches the "very rich" level according to China Solar energy GB Standards.The solar radiation of Qaidam Basin is at its highest abundance level, which is ideal for solar energy resource development.Precipitation generally decreases from southeast to northwest.The resources of wind, solar radiation, and precipitation in Qinghai Province exhibits seasonal complementarity, characterized by a pattern of “strong winds, good sunlight, and less water in spring, whereas weak winds, good sunlight, and abundant water in summer”.(2) Under climate change, the annual average wind speed and total solar radiation in Qinghai Province show a significant decrease at rates of 0.16 m·s-1·10a-1and 29.04 MJ·m-2·(10a)-1, respectively.The western and central parts of Haixi are most affected by these changes, but the wind speed and solar radiation still remain within the acceptable range for wind energy and photovoltaic resource development.Meanwhile, precipitation increases significantly at a rate of 8.85 mm·(10a)-1, with the largest increase observed in western Yushu, eastern Haixi and northern Guoluo.The most significant decrease in wind speed is observed in spring, while summer solar radiation decreases at the fastest rate but with a substantial increase in precipitation.The changes in solar radiation and precipitation could be ascribed to the increased cloud cover in this region.(3) The changes in the areas where wind speed and solar radiation meet suitable development standards in Qinghai Province are not significant with reduced variabilities, which could ensure the stable development of clean energy.Wind energy resources in western Qinghai (such as Tanggula Mountains), solar energy resources in the Qaidam Basin, and water energy resources in the three major river basins of the Yangtze River, Yellow River, and Lancang River have great potential for development.Overall, the results provide a theoretical foundation for the development of a balanced clean energy system encompassing wind, solar and hydropower.This contributes to achieving national "dual carbon" goals and enhancing the high-quality development of Qinghai Province.

参考文献

null
?ngstr?m, 1929.On the atmospheric transmission of sun radiation and on dust in the air[J].Geografiska Annaler11(2): 156-166.DOI: 10.1080/20014422.1929.11880498 .
null
Berghuijs W R Woods R A Hrachowitz M2014.A precipitation shift from snow towards rain leads to a decrease in streamflow[J].Nature Climate Change4(7): 583-586.DOI: 10.1038/nclimate2246 .
null
Chilkoti V Bolisetti T Balachandar R2017.Climate change impact assessment on hydropower generation using multi-model climate ensemble[J].Renewable Energy, 109: 510-517.DOI: 10.1016/j.renene.2017.02.041 .
null
Diao W J Zhao Y Dong Y Y, et al, 2020.Spatiotemporal variability of surface wind speed during 1961-2017 in the Jing-jin-ji region, China[J].Journal of Meteorological Research34(3): 621-632.DOI: 10.1007/s13351-020-9119-5 .
null
Ge J Feng D P You Q L, et al, 2021.Characteristics and causes of surface wind speed variations in Northwest China from 1979 to 2019[J].Atmospheric Research, 254: 105527.DOI: 10.1007/s00704-019-02824-w .
null
Guo H Xu M Hu Q2011.Changes in near‐surface wind speed in China: 1969-2005[J].International Journal of Climatology31(3): 349-358.DOI: 10.1016/j.agrformet.2018.03.002 .
null
Han S J Tang Q H Zhang X Z, et al, 2016.Surface wind observations affected by agricultural development over Northwest China[J].Environmental Research Letters11(5): 054014.DOI: 10. 1155/2014/410198 .
null
IPCC, 2021.Summary for policymakers.In climate change 2021: The physical science basis.contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change[M].Cambridge and New York: Cambridge University Press, 1-41.DOI: 10.1038/446727a .
null
Jiang C Wang F Liu Y X, et al, 2013.Spatial-temporal variation and mutation of wind speed in the northern and southern regions of the Qinling Mountains[J].Scientia Geographica Sinica, 33: 244-250.
null
Kalnay E Kanamitsu M Kistler R, et al, 1996.The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the American Meteorological Society77 (3): 437-472.
null
Kendall M G1957.Rank correlation methods[J].Biometrika44(1/2): 298.DOI: 10.2307/2333282 .
null
Liang F Xia X A2005.Long-term trends in solar radiation and the associated climatic factors over China for 1961-2000[C].Annales Geophysicae.G?ttingen, Germany: Copernicus Publications, 23(7): 2425-2432.DOI: 10.5194/angeo-23-2425-2005 .
null
Lin C G Yang K Qin J, et al, 2013.Observed coherent trends of surface and upper-air wind speed over China since 1960[J].Journal of Climate26(9): 2891-2903.DOI: 10.1175/JCLI-D-12-00093.1 .
null
Liu B Xu M Henderson M, et al, 2005.Observed trends of precipitation amount, frequency, and intensity in China, 1960-2000[J].Journal of Geophysical Research: Atmospheres, 110: D08103.DOI: 10.1029/2004JD004864 .
null
Mann H B1945.Nonparametric tests against trend[J].Econometrica: Journal of the Econometric Society, 245-259.DOI: 10.2307/1907187 .
null
Sweerts B Pfenninger S Yang S, et al, 2019.Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data[J].Nature Energy4(8): 657-663.DOI: 10.1038/s41560-019-0412-4 .
null
Tang W J Xu S Zhou X, et al, 2023.Meeting China’s electricity demand with renewable energy over Tibetan Plateau[J].Science Bulletin68(1): 39-42.DOI: 10.1016/j.rser.2010.11.00 .
null
Tang W J Yang K Qin J, et al, 2011.Solar radiation trend across China in recent decades: a revisit with quality-controlled data[J].Atmospheric Chemistry and Physics11(1): 393-406.DOI: 10.5194/acpd-10-18389-2010 .
null
Wan G N Yang M X Liu Z C, et al, 2017.The precipitation variations in the Qinghai-Xizang (Tibetan) Plateau during 1961-2015[J].Atmosphere8(5): 80.DOI: 10.3390/atmos8050080 .
null
Wang W G Shao Q X Yang T, et al, 2013.Changes in daily temperature and precipitation extremes in the Yellow River Basin, China[J].Stochastic Environmental Research and Risk Assessment, 27: 401-421.DOI: 10.1007/s00477-012-0615-8 .
null
Wu Y J Wu S Y Wen J H, et al, 2016.Changing characteristics of precipitation in China during 1960-2012[J].International Journal of Climatology36(3): 1387-1402.DOI: 10.1002/joc.4432 .
null
You Q L Fraedrich K Min J Z, et al, 2014.Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes[J].International Journal of Climatology34(6): 1873-1882.DOI: 10.1002/joc.3807 .
null
Yue S Pilon P Cavadias G2002.Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series[J].Journal of Hydrology259(1/4): 254-271.DOI: 10.1016/S0022-1694(01)00594-7 .
null
Zeng Z Ziegler A D Searchinger T, et al, 2019.A reversal in global terrestrial stilling and its implications for wind energy production[J].Nature Climate Change9(12): 979-985.
null
Zhang Q H Ni X Zhang F Q2017.Decreasing trend in severe weather occurrence over China during the past 50 years[J].Scientific Reports7(1): 42310.DOI: 10.1038/srep42310 .
null
Zhang W X Furtado K Wu P L, et al, 2021.Increasing precipitation variability on daily-to-multiyear time scales in a warmer world[J].Science Advances7(31): eabf8021.DOI: 10.1126/sciadv.abf8021 .
null
Zhang Z T Wang K C2020.Stilling and recovery of the surface wind speed based on observation, reanalysis, and geostrophic wind theory over China from 1960 to 2017[J].Journal of Climate33(10): 3989-4008.DOI: 10.1175/JCLI-D-19-0281.1 .
null
白大勇, 曹矞, 张勇, 2022. 近 60年青海省极端降水时空分布特征分析[J].人民长江, 53(10): 59-64.DOI: 10.16232/j.cnki.1001-4179.2022.10.009.Bai D Y
null
Cao Y Zhang Y2022.Improvement of urban drainage capacity based on combined regulation of LID and pumping operations[J].Yangtze River53(10): 59-64.DOI: 10.16232/j.cnki.1001-4179.2022.10.009 .
null
保广裕, 张静, 周丹, 等, 2017.青海省太阳辐射强度时空变化特征分析[J].冰川冻土39(3): 563-571.DOI: 10.7522/j.issn.1000-0240.2017.0063.Bao G Y
null
Zhang J Zhou D, et al, 2017.Analysis of the spatiotemporal characteristics of solar radiation intensity in Qinghai Province[J].Journal of Glaciology and Geocryology39(3): 563-571.DOI: 10.7522/j.issn.1000-0240.2017.0063 .
null
陈虹举, 杨建平, 丁永建, 等, 2021.多模式产品对青藏高原极端气候模拟能力评估[J].高原气象40(5): 977-990.DOI: 10.7522/j.issn.1000-0534.2020.00104.DOI: 10.7522/j.issn.1000-0534.2020.00104.Chen H J
null
Yang J P Ding Y J, et al, 2021.Evaluation of extreme weather indices over Qinghai-Xizang Plateau in NEX-GDDP[J].Plateau Meteorology40(5): 977-990.DOI: 10.7522/j.issn.1000-0534.2020.00104 .
null
董丝雨, 刘温馨, 2023.贯彻新发展理念助力碳达峰碳中和[N].人民日报, 04-11(010).
null
Dong S Y Liu W X2023.Implement new development concepts to help reach carbon peak and become carbon neutral[N].People's Daily, 04-11(010).
null
江滢, 徐希燕, 刘汉武, 等, 2018.CMIP5 和 CMIP3 对未来中国近地层风速变化的预估[J].气象与环境学报34(6): 56-63.
null
Jiang Y Xu X Y Liu H W, et al, 2018.Projection of surface wind by CMIP5 and CMIP3 in China in the 21st century[J].Journal of Meteorology and Environment34(6): 56-63.
null
江滢, 罗勇, 赵宗慈, 2009.中国及世界风资源变化研究进展[J].科技导报27(13): 96-104.
null
Jiang Y Luo Y Zhao Z C2009.Review of research on wind resources changes in China and in the world[J].Science & Technology Review27(13): 96-104.
null
李林, 汪青春, 时兴合, 2013.青海省太阳能风能监测评估服务技术[M].北京: 气象出版社.Li L, Wang Q C, Shi X H, 2013.Qinghai Province solar and wind energy monitoring and assessment service technology[M].Beijing: Meteorological Press.
null
李晓英, 姚正毅, 肖建华, 等, 2016.1961-2010年青藏高原降水时空变化特征分析[J].冰川冻土38(5): 1233-1240.DOI: 10.7522/j.issn.1000-0240.2016.0144.Li X Y
null
Yao Z Y Xiao J H, et al, 2016.Analysis of the spatial-temporal variation characteristics of precipitation over the Tibetan Plateau from 1961 through 2010[J].Journal of Glaciology and Geocryology38( 5): 1233-1240.DOI: 10.7522/j.issn.1000-0240.2016.0144 .
null
刘维成, 张强, 傅朝, 2017. 近 55 年来中国西北地区降水变化特征及影响因素分析[J].高原气象, 36(6): 1533-1545.DOI: 10.7522/j.issn.1000-0534.2017.00081.Liu W C
null
Zhang Q Fu Z2017.Variation characteristics of precipitation and its affecting factors in Northwest China over the past 55 Years[J].Plateau Meteorology36( 6): 1533-1545.DOI: 10.7522 /j.issn.1000-0534.2017.00081.
null
刘晓琼, 吴泽洲, 刘彦随, 等, 2019.1960-2015年青海三江源地区降水时空特征[J].地理学报74(9): 1803-1820.
null
Liu X Q Wu Z Z Liu Y S, et al, 2019.Temporal and spatial characteristics of precipitation in the source area of Three Rivers in Qinghai Province from 1960 to 2015[J].Acta Geographica Sinica74(9): 1803-1820.
null
卢楚翰, 管兆勇, 李永华, 等, 2013.太平洋年代际振荡与南北半球际大气质量振荡及东亚季风的联系[J].地球物理学报56(4): 1084-1094.DOI: 10.6038/cjg201300404.Lu C H
null
Guan Z Y Li Y H, et al, 2013.Interdecadal linkages between Pacific decadal oscillation and interhemispheric air mass oscillation and their possible connections with East Asian Monsoon[J].Chinese Journal of Geophysics.56(4): 1084-1094.DOI: 10.6038/cjg201300404 .
null
秦大河, 丁永建, 2009.冰冻圈变化及其影响研究现状, 趋势及关键问题[J].气候变化研究进展5(4): 187-195.DOI: 10. 3969/j.issn.1673-1719.2009.04.001.Qin D H
null
Ding Y J2009.Cryospheric changes and their impacts: present, trends and key issues[J].Advances in Climate Change Research5(4): 187-195.DOI: 10.3969/j.issn.1673-1719.2009.04.001 .
null
全国气候与气候变化标准化技术委员会, 风能太阳能气候资源分技术委员会(SAC/TC 540/ SC 2), 2019.GB/T 37526-2019太阳能资源评估方法[S].北京: 中国标准出版社.National Climate and Climate Change Standardization Technical Committee, Wind Energy and Solar Energy Climate Resources Sub-Technical Committee (SAC/TC 540/SC 2), 2019.
null
GB/T 37526-2019 Solar energy resource assessment method [S].Beijing: China Standard Press.
null
孙景博, 王阳, 杨晓帆, 等, 2023.中国风光资源气候风险时空变化特征分析[J].中国电力56(5): 1-10.
null
Sun J B Wang Y Yang X F, et al, 2023.Analysis of spatial and temporal variation character of climate risks of wind and solar resources in China[J].Electric Power56(5): 1-10.
null
王慧, 2013.近50年青海省风速的变化特征分析[J].科技资讯(1): 130-131.DOI: 10.16661/j.cnki.1672-3791.2013.01.197. Wang H , 2013.Analysis of the changing characteristics of wind speed in Qinghai Province in the past 50 years[J].Science and Technology Information (1): 130-131.DOI: 10.16661/j.cnki.1672-3791.2013.01.197 .
null
王江山, 李锡福, 2004.青海天气气候[M].北京: 气象出版社.Wang J S, Li X F, 2004.Qinghai weather and climate[M].Beijing: Meteorological Press.
null
王振海, 黄志凤, 陈艳, 等, 2015.1961-2010年青海玉树地区太阳总辐射的长期变化研究[J].冰川冻土37(3): 692-700.DOI: 10.7522 /j.issn.1000-0240.2015.0078.Wang Z H
null
Huang Z F Chen Y, et al, 2015.Research on variation of solar radiation over Yushu region of Qinghai Province from 1961 to 2010[J].Journal of Glaciology and Geocryology37(3): 692-700.DOI: 10.7522 /j.issn.1000-0240.2015.0078 .
null
王中敏, 雷国波, 杨艳, 2014.浅谈风力发电在青海的发展前景[J].科技创新与应用4(12): 131.
null
Wang Z M Lei G B Yang Y2014.A brief discussion on the development prospects of wind power generation in Qinghai[J].Science and Technology Innovation and Application4(12): 131.
null
吴佳, 吴婕, 闫宇平, 2022.1961-2020年青藏高原地表风速变化及动力降尺度模拟评估[J].高原气象41(4): 963-976.DOI: 10.7522/j.issn.1000-0534.2022.00065.Wu J
null
Wu J Yan Y P2022.Changes of surface wind speed over Qinghai-Xizang Plateau from 1961 to 2020 and evaluation of the dynamical downscaling simulations[J].Plateau Meteorology41(4): 963-976.DOI: 10.7522/j.issn.1000- 0534.2022.00065 .
null
吴旭力, 2023.“双碳”目标下青海风光电发展研究[J].中国国情国力32(1): 16-23.
null
Wu X L2023.Research on Qinghai wind and photovoltaic development under the “dual carbon” goal[J].China’s National Conditions and Strength32(1): 16-23.
null
伍云华, 2017.青海省水资源现状评价及对策建议[J].水利规划与设计30(9): 35-36+54.DOI: 10.3969/j.issn.1672-2469. 2017.09.011.Wu Y H , 2017.Assessment of the current status of water resources in Qinghai Province and countermeasures and suggestions [J].Water Conservancy Planning and Design, 30(9): 35-36+54.DOI: 10.3969/j.issn.1672-2469.2017.09.011 .
null
杨溯, 石广玉, 王标, 等, 2013.1961~2009年我国地面太阳辐射变化特征及云对其影响的研究[J].大气科学37(5): 963-970.
null
Yang Su Shi Guangyu Wang Biao, et al, 2013.Trends in Surface Solar Radiation (SSR) and the effect of clouds on SSR during 1961-2009 in China[J].Chinese Journal of Atmospheric Sciences37 (5): 963-970.
null
叶晨凤, 冯旭, 钟荣林, 2023.基于光伏发电的开发价值研究——以青海塔拉滩光伏发电站为例[J].产业创新研究7(8): 95-97.
null
Ye C F Feng X Zhong R L2023.Research on the development value of photovoltaic power generation-taking Qinghai Talatan Photovoltaic Power Station as an example [J].Industrial Innovation Research7(8): 95-97.
null
张爱英, 任国玉, 郭军, 等, 2009.近30 年我国高空风速变化趋势分析[J].高原气象28(3): 680-687.
null
Zhang A Y Ren G Y Guo J, et al, 2009.Analysis of the changing trend of high-altitude wind speed in my country in the past 30 years [J].Plateau Meteorology28(3): 680-687.
null
张建云, 王银堂, 贺瑞敏, 等, 2016.中国城市洪涝问题及成因分析[J].水科学进展27(4): 485-491.DOI: 10.14042/j.cnki.32.1309.2016.04.001.Zhang J Y
null
Wang Y T He R M, et al, 2016.Analysis of urban flood problems and causes in China [J].Progress in Water Science27(4): 485-491.DOI: 10.14042/j.cnki.32.1309.2016.04.001 .
null
张少婷, 肖国杰, 范广洲, 等, 2017.青海省日照时数的时空变化特征分析[J].干旱区资源与环境31(1): 121-126.DOI: 10.13448/j.cnki.jalre.2017.020.Zhang S T
null
Xiao G J Fan G Z, et al, 2017.Spatial and temporal variation characteristics of sunshine duration in Qinghai Province[J].Arid Zone Resources and Environment31(1): 121-126.DOI: 10.13448/j.cnki.jalre.2017.020 .
null
赵宗慈, 罗勇, 江滢, 等, 2016.近50 年中国风速减小的可能原因[J].气象科技进展6( 3): 106-109.
null
Zhao Z C Luo Y Jiang Y, et al, 2016.Possible reasons for the decrease in wind speed in China in the past 50 years[J].Progress in Meteorological Science and Technology6(3): 106-109.
null
周勇, 刘艳峰, 王登甲, 等, 2022.中国不同气候区日总太阳辐射计算模型适用性分析及通用计算模型优化[J].太阳能学报43(9): 1-7.DOI: 10.19912/j.0254-0096.tynxb.2021-0217.Zhou Y
null
Liu Y F Wang D J, et al, 2022.Applicability analysis of daily total solar radiation calculation models in different climate zones in China and optimization of general calculation models [J].Journal of Solar Energy43(9): 1-7.DOI: 10.19912/j.0254-0096.tynxb.2021-0217 .
文章导航

/