收稿日期: 2023-08-10
修回日期: 2024-03-20
网络出版日期: 2024-03-20
基金资助
青海省科学技术厅青海省重点研发与转化计划项目(2022-SF-173)
Spatiotemporal Change in Climate Variables and Resources of Wind, Solar Radiation and Precipitation in Qinghai Province from 1961 to 2021
Received date: 2023-08-10
Revised date: 2024-03-20
Online published: 2024-03-20
为系统评估青海省风光水气候要素在清洁能源开发和保障方面的潜力, 本研究基于1961 -2021年青海省境内51个气象站点的逐日10 m高度风速、 日照时数及降水观测资料, 分析了青海全年及四季风、 光、 水气候要素和相关资源的时空变化特征。研究发现: (1)青海省年平均风速、 太阳辐射和降水量分别为2.67 m·s-1、 6084.2 MJ·m-2和299.7 mm。风速总体呈现西部大、 东部小的特点, 青海西部及青海湖环湖等地区风速超过3 m·s-1, 达到风能资源开发标准。全境年太阳辐射均超过5040 MJ·m-2, 达国标“很丰富”等级, 柴达木盆地达“最丰富”等级, 适宜太阳能资源开发。降水量自东南向西北递减。青海省的风、 光、 水资源存在季节互补性, 呈现出“春季风大、 光好、 水少, 夏季风小、 光好、 水丰”的规律。(2)在气候变化背景下, 青海省年平均风速和年总太阳辐射以0.16 m·s-1·(10a)-1和29.04 MJ·m-2·(10a)-1的速率显著降低, 海西西部和中部地区变化幅度最大, 但仍维持在风能和光伏资源开发标准范围内。降水量以8.85 mm·(10a)-1的速率显著增多, 玉树西部、 海西东部等地区增幅最大。春季风速降低最显著, 夏季太阳辐射减小速率最快但降水大幅增加。总云量增多是太阳辐射和降水变化的可能原因。(3)青海风速和太阳辐射达到适宜开发标准的地区受影响较小且极端性减弱, 可保障清洁能源稳定开发。青海西部(如唐古拉山)的风能资源、 柴达木盆地的太阳能资源、 长江、 黄河和澜沧江三大流域的水能资源仍具有较大开发潜力。本研究结果可为发展风光水多能互补清洁能源开发提供理论依据, 助力国家“双碳”目标的实现和青海省高质量发展。
段美霞 , 高妙妮 , 姜涵 , 徐润宏 , 苏布达 , 姜彤 . 1961 -2021年青海省风光水气候要素和资源时空变化特征[J]. 高原气象, 2024 , 43(6) : 1614 -1629 . DOI: 10.7522/j.issn.1000-0534.2024.00041
In order to evaluate the potential of wind, solar radiation and precipitation in guaranteeing the development of clean energy comprehensively, this study analyzed the temporal and spatial changes in climate variables and resources of wind speed, solar radiation and precipitation in Qinghai Province throughout the year and four seasons from 1961 to 2021 based on the observation data of daily 10-meter-height wind speed, sunshine duration and precipitation at 51 meteorological stations.The results are as follows: (1) The annual average wind speed, solar radiation and precipitation in Qinghai Province are 2.67 m·s-1, 6084.2 MJ·m-2, and 299.7 mm, respectively.Wind speed tends to be higher in the western regions and lower in the east, which exceeds 3 m/s and reaches the standard for wind energy resource development in western Qinghai.The annual solar radiation in the entire Province exceeds 5040 MJ·m-2, and reaches the "very rich" level according to China Solar energy GB Standards.The solar radiation of Qaidam Basin is at its highest abundance level, which is ideal for solar energy resource development.Precipitation generally decreases from southeast to northwest.The resources of wind, solar radiation, and precipitation in Qinghai Province exhibits seasonal complementarity, characterized by a pattern of “strong winds, good sunlight, and less water in spring, whereas weak winds, good sunlight, and abundant water in summer”.(2) Under climate change, the annual average wind speed and total solar radiation in Qinghai Province show a significant decrease at rates of 0.16 m·s-1·10a-1and 29.04 MJ·m-2·(10a)-1, respectively.The western and central parts of Haixi are most affected by these changes, but the wind speed and solar radiation still remain within the acceptable range for wind energy and photovoltaic resource development.Meanwhile, precipitation increases significantly at a rate of 8.85 mm·(10a)-1, with the largest increase observed in western Yushu, eastern Haixi and northern Guoluo.The most significant decrease in wind speed is observed in spring, while summer solar radiation decreases at the fastest rate but with a substantial increase in precipitation.The changes in solar radiation and precipitation could be ascribed to the increased cloud cover in this region.(3) The changes in the areas where wind speed and solar radiation meet suitable development standards in Qinghai Province are not significant with reduced variabilities, which could ensure the stable development of clean energy.Wind energy resources in western Qinghai (such as Tanggula Mountains), solar energy resources in the Qaidam Basin, and water energy resources in the three major river basins of the Yangtze River, Yellow River, and Lancang River have great potential for development.Overall, the results provide a theoretical foundation for the development of a balanced clean energy system encompassing wind, solar and hydropower.This contributes to achieving national "dual carbon" goals and enhancing the high-quality development of Qinghai Province.
Key words: wind speed; precipitation; solar radiation; climate resources; Qinghai Province
null | ?ngstr?m, 1929.On the atmospheric transmission of sun radiation and on dust in the air[J].Geografiska Annaler, 11(2): 156-166.DOI: 10.1080/20014422.1929.11880498 . |
null | |
null | |
null | |
null | |
null | |
null | |
null | IPCC, 2021.Summary for policymakers.In: climate change 2021: The physical science basis.contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change[M].Cambridge and New York: Cambridge University Press, 1-41.DOI: 10.1038/446727a . |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 白大勇, 曹矞, 张勇, 2022. 近 60年青海省极端降水时空分布特征分析[J].人民长江, 53(10): 59-64.DOI: 10.16232/j.cnki.1001-4179.2022.10.009.Bai D Y , |
null | |
null | 保广裕, 张静, 周丹, 等, 2017.青海省太阳辐射强度时空变化特征分析[J].冰川冻土, 39(3): 563-571.DOI: 10.7522/j.issn.1000-0240.2017.0063.Bao G Y , |
null | |
null | 陈虹举, 杨建平, 丁永建, 等, 2021.多模式产品对青藏高原极端气候模拟能力评估[J].高原气象, 40(5): 977-990.DOI: 10.7522/j.issn.1000-0534.2020.00104.DOI: 10.7522/j.issn.1000-0534.2020.00104.Chen H J , |
null | |
null | 董丝雨, 刘温馨, 2023.贯彻新发展理念助力碳达峰碳中和[N].人民日报, 04-11(010). |
null | |
null | 江滢, 徐希燕, 刘汉武, 等, 2018.CMIP5 和 CMIP3 对未来中国近地层风速变化的预估[J].气象与环境学报, 34(6): 56-63. |
null | |
null | 江滢, 罗勇, 赵宗慈, 2009.中国及世界风资源变化研究进展[J].科技导报, 27(13): 96-104. |
null | |
null | 李林, 汪青春, 时兴合, 2013.青海省太阳能风能监测评估服务技术[M].北京: 气象出版社.Li L, Wang Q C, Shi X H, 2013.Qinghai Province solar and wind energy monitoring and assessment service technology[M].Beijing: Meteorological Press. |
null | 李晓英, 姚正毅, 肖建华, 等, 2016.1961-2010年青藏高原降水时空变化特征分析[J].冰川冻土, 38(5): 1233-1240.DOI: 10.7522/j.issn.1000-0240.2016.0144.Li X Y , |
null | |
null | 刘维成, 张强, 傅朝, 2017. 近 55 年来中国西北地区降水变化特征及影响因素分析[J].高原气象, 36(6): 1533-1545.DOI: 10.7522/j.issn.1000-0534.2017.00081.Liu W C , |
null | |
null | 刘晓琼, 吴泽洲, 刘彦随, 等, 2019.1960-2015年青海三江源地区降水时空特征[J].地理学报, 74(9): 1803-1820. |
null | |
null | 卢楚翰, 管兆勇, 李永华, 等, 2013.太平洋年代际振荡与南北半球际大气质量振荡及东亚季风的联系[J].地球物理学报, 56(4): 1084-1094.DOI: 10.6038/cjg201300404.Lu C H , |
null | |
null | 秦大河, 丁永建, 2009.冰冻圈变化及其影响研究现状, 趋势及关键问题[J].气候变化研究进展, 5(4): 187-195.DOI: 10. 3969/j.issn.1673-1719.2009.04.001.Qin D H , |
null | |
null | 全国气候与气候变化标准化技术委员会, 风能太阳能气候资源分技术委员会(SAC/TC 540/ SC 2), 2019.GB/T 37526-2019太阳能资源评估方法[S].北京: 中国标准出版社.National Climate and Climate Change Standardization Technical Committee, Wind Energy and Solar Energy Climate Resources Sub-Technical Committee (SAC/TC 540/SC 2), 2019. |
null | GB/T 37526-2019 Solar energy resource assessment method [S].Beijing: China Standard Press. |
null | 孙景博, 王阳, 杨晓帆, 等, 2023.中国风光资源气候风险时空变化特征分析[J].中国电力, 56(5): 1-10. |
null | |
null | 王慧, 2013.近50年青海省风速的变化特征分析[J].科技资讯(1): 130-131.DOI: 10.16661/j.cnki.1672-3791.2013.01.197. Wang H , 2013.Analysis of the changing characteristics of wind speed in Qinghai Province in the past 50 years[J].Science and Technology Information (1): 130-131.DOI: 10.16661/j.cnki.1672-3791.2013.01.197 . |
null | 王江山, 李锡福, 2004.青海天气气候[M].北京: 气象出版社.Wang J S, Li X F, 2004.Qinghai weather and climate[M].Beijing: Meteorological Press. |
null | 王振海, 黄志凤, 陈艳, 等, 2015.1961-2010年青海玉树地区太阳总辐射的长期变化研究[J].冰川冻土, 37(3): 692-700.DOI: 10.7522 /j.issn.1000-0240.2015.0078.Wang Z H , |
null | |
null | 王中敏, 雷国波, 杨艳, 2014.浅谈风力发电在青海的发展前景[J].科技创新与应用, 4(12): 131. |
null | |
null | 吴佳, 吴婕, 闫宇平, 2022.1961-2020年青藏高原地表风速变化及动力降尺度模拟评估[J].高原气象, 41(4): 963-976.DOI: 10.7522/j.issn.1000-0534.2022.00065.Wu J , |
null | |
null | 吴旭力, 2023.“双碳”目标下青海风光电发展研究[J].中国国情国力, 32(1): 16-23. |
null | |
null | 伍云华, 2017.青海省水资源现状评价及对策建议[J].水利规划与设计, 30(9): 35-36+54.DOI: 10.3969/j.issn.1672-2469. 2017.09.011.Wu Y H , 2017.Assessment of the current status of water resources in Qinghai Province and countermeasures and suggestions [J].Water Conservancy Planning and Design, 30(9): 35-36+54.DOI: 10.3969/j.issn.1672-2469.2017.09.011 . |
null | 杨溯, 石广玉, 王标, 等, 2013.1961~2009年我国地面太阳辐射变化特征及云对其影响的研究[J].大气科学, 37(5): 963-970. |
null | |
null | 叶晨凤, 冯旭, 钟荣林, 2023.基于光伏发电的开发价值研究——以青海塔拉滩光伏发电站为例[J].产业创新研究, 7(8): 95-97. |
null | |
null | 张爱英, 任国玉, 郭军, 等, 2009.近30 年我国高空风速变化趋势分析[J].高原气象, 28(3): 680-687. |
null | |
null | 张建云, 王银堂, 贺瑞敏, 等, 2016.中国城市洪涝问题及成因分析[J].水科学进展, 27(4): 485-491.DOI: 10.14042/j.cnki.32.1309.2016.04.001.Zhang J Y , |
null | |
null | 张少婷, 肖国杰, 范广洲, 等, 2017.青海省日照时数的时空变化特征分析[J].干旱区资源与环境, 31(1): 121-126.DOI: 10.13448/j.cnki.jalre.2017.020.Zhang S T , |
null | |
null | 赵宗慈, 罗勇, 江滢, 等, 2016.近50 年中国风速减小的可能原因[J].气象科技进展, 6( 3): 106-109. |
null | |
null | 周勇, 刘艳峰, 王登甲, 等, 2022.中国不同气候区日总太阳辐射计算模型适用性分析及通用计算模型优化[J].太阳能学报, 43(9): 1-7.DOI: 10.19912/j.0254-0096.tynxb.2021-0217.Zhou Y , |
null |
/
〈 |
|
〉 |