一次黄河气旋新生过程中湿斜压不稳定机制的数值模拟研究
收稿日期: 2023-02-05
修回日期: 2023-09-28
网络出版日期: 2024-06-03
基金资助
国家自然科学基金面上项目(42075013); 中国气象局复盘总结专项(FPZJ2024-047); 江苏省气象局面上项目(KM202302); 北极阁开放研究基金重点项目(NJCAR2018ZD02)
Numerical Simulation Study of Moist Baroclinic Instability Mechanism during a Yellow River Cyclogenesis Event
Received date: 2023-02-05
Revised date: 2023-09-28
Online published: 2024-06-03
作为温带气旋形成的主要机制, 湿斜压不稳定在气旋动热力学研究中占据中心地位, 其可进一步分为干斜压不稳定、 湿不稳定、 非绝热Rossby波和Type C气旋新生(对流层顶干侵入)四类。2016年7月18日黄河气旋快速生成后东移进入华北造成“7·20”特大暴雨, 相比气旋成熟期, 其初生阶段的动热力机制尚不清楚。本文利用ERA5再分析资料与WRF模式, 对该气旋新生过程的湿斜压不稳定机制进行了数值模拟研究。模拟结果指出, 对流层中低层呈非绝热Rossby波形态, 即系统东移发展主要由垂直运动-非绝热效应的循环所推动, 其中波动触发和传播所依赖的垂直运动更多由涡度平流提供; 高层位涡汇与非地转风延缓了对流层顶干侵入位涡的东移, 维持了高低层相位差, 最终在干侵入前部发展出贯穿对流层的位涡柱。利用非线性片段位涡反演, 分别从初始场中移除非平衡分量、 对流层顶干侵入位涡、 低层非绝热源位涡, 设计了若干敏感性试验, 结合广义垂直运动方程分析可得: 本次过程斜压波必须在充足水汽条件下与非绝热过程耦合才能强烈发展, 关闭潜热气旋新生将被抑制, 干斜压不稳定无法解释本次过程; 初始非平衡场的去除不影响本次斜压不稳定性质但将延后系统发展时间, 受湿度条件和中尺度环流结构限制, 低层非平衡风的活跃区域主要由干斜压动力学控制; 该个例近地面位温梯度小, 仅依赖低层初始位涡难以有效组织起非绝热Rossby波东传, 同时有别于Type C气旋新生, 高层位涡异常也不足以激发起强大的中低层非绝热加热。于本次黄河气旋新生而言, 一方面要求初始低层位涡异常具有一定强度, 以抵消高层干侵入前部伴随的冷却下沉对其的抑制; 另一方面也需要高层位涡异常通过垂直渗透以涡度平流形式加强低层位涡东侧上升运动, 在高低层初始相位差合适情况下, 持续促使非绝热Rossby波东移发展, 推动系统进入水汽条件更好的华北地区。干斜压不稳定、 非绝热Rossby波和Type C气旋新生机制均不能独立解释本次事件, 此次黄河气旋新生是在非绝热Rossby波和对流层顶干侵入混合作用下, 初始时刻最优扰动增长形成的。
李驰钦 , 鲁蓉 , 张万诚 , 金小霞 , 高守亭 . 一次黄河气旋新生过程中湿斜压不稳定机制的数值模拟研究[J]. 高原气象, 2024 , 43(3) : 635 -654 . DOI: 10.7522/j.issn.1000-0534.2023.00080
As the main mechanism of extratropical cyclogenesis, moist baroclinic instability plays a central role in the study of cyclone thermodynamics, which can be further divided into four categories: dry baroclinic instability, moist instability, diabatic Rossby wave and Type C cyclogenesis (tropopause intrusion).The '7·20' heavy rainstorm was caused by the eastward movement of a Yellow River cyclone into North China after its rapid formation on July 18, 2016.Compared with the mature stage of the cyclone, the mechanism of the initial stage is still unclear.This article uses ERA5 reanalysis data and WRF model to study the moist baroclinic instability of the cyclogenesis event numerically.The results show that mid-lower troposphere presented diabatic Rossby wave pattern, that is, the eastward movement of the system was mainly driven by the cycle of vertical motion and diabatic effect.The vertical motion on which the wave relied was more provided by vorticity advection.The PV sink and the ageostrophic wind in the upper layer delayed the eastward movement of the tropopause intrusion PV, maintaining the phase difference between upper and lower layers.Finally, a PV column formed throughout the troposphere in front of dry intrusion.Using piecewise PV inversion, several sensitivity runs are designed to remove unbalanced circulation, tropopause dry intrusion PV and lower-level diabatic-produced PV from the initial field, respectively.Combined with the analysis of generalized omega equation, it shows that the baroclinic wave in this process must be coupled with the diabatic process with the help of sufficient water vapor to develop strongly.The cyclogenesis was suppressed when the latent heat was turned off.Dry baroclinic instability cannot explain this process.The removal of initial unbalanced field did not affect the baroclinic instability but will delay development of the system.Limited by humidity and mesoscale circulation structure, the active area of lower-level unbalanced flow was controlled by dry baroclinic dynamics.In this case, the gradient of was too small to organize eastward diabatic Rossby wave by relying only on the initial lower-level PV.Nor can strong lower-level diabatic heating generate as in Type C cyclogenesis by tropopause intrusion.For this Yellow River cyclogenesis case, it is required the initial lower-level PV anomaly to be strong enough to counteract the suppression of the cooling subsidence in front of dry intrusion; on the other hand, it is also required that the dry intrusion, in an appropriate initial phase difference with the lower system, strengthened the ascending motion east of the low-level PV in form of vorticity advection through vertical penetration, so as to promote the eastward momentum of diabatic Rossby wave to enter north China with more saturated environment.None of dry baroclinic instability, diabatic Rossby wave and Type C cyclogenesis could independently explain this cyclogenesis event, which was an initial optimal perturbation growth under the combined effect of diabatic Rossby wave and tropopause dry intrusion.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 白云飞, 赵宇, 李树岭, 等, 2023.造成东北地区暴雪过程的温带气旋暖输送带特征研究[J].高原气象, 42(5): 1271-1284.DOI: 10.7522/j.issn.1000-0534.2022.00108.Bai Y F , |
null | |
null | 邓承之, 赵宇, 孔凡铀, 等, 2021.“6·30”川渝特大暴雨过程中西南低涡发展机制模拟分析[J].高原气象, 40(1): 85-97.DOI: 10.7522/j.issn.1000-0534.2019. 00106.Deng C Z , ZhaoY, KongF Y, et al, 2021.A numerical simulation study of the southwest vortex mechanism during the “6.30” heavy rain event in Sichuan and Chongqing[J].Plateau Meteorology, 40(1): 85-97.DOI: 10.7522/j.issn.1000-0534.2019. 00106 . |
null | 高守亭, 周菲凡, 2006.基于螺旋度的中尺度平衡方程及非平衡流诊断方法[J].大气科学, 30(5): 854-862. |
null | |
null | 高守亭, 周玉淑, 张万诚, 等, 2023.垂直运动研究进展及新型垂直运动方程[J].大气科学, 47(4): 1039-1049.DOI: 10.3878/j.issn.1006-9895.2109.21140.Gao S T , |
null | |
null | 葛晶晶, 钟玮, 陆汉城, 2011.致洪暴雨过程中尺度涡旋的涡散作用及准平衡流诊断分析[J].气象学报, 69(2): 277-288. |
null | |
null | 郭大梅, 潘留杰, 李明娟, 等, 2022.关中北部一次暴雨水汽条件及不稳定分析[J].高原气象, 41(6): 1481-1491.DOI: 10.7522/j.issn.1000-0534.2021.00090.Guo D M , |
null | |
null | 郭云云, 康岚, 邓莲堂, 等, 2022.不同定义的位涡对四川盆地一次极端暴雨的诊断[J].高原气象, 41(5): 1242-1250.DOI: 10.7522/j.issn.1000-0534.2021.00051.Guo Y Y , |
null | |
null | 雷蕾, 孙继松, 何娜, 等, 2017.“7.20”华北特大暴雨过程中低涡发展演变机制研究[J].气象学报, 75(5): 685-699.DOI: 10.11676/qxxb2017.054.Lei L , |
null | |
null | 林璇, 赵磊, 李得勤, 等, 2020.华北“7·20”特大暴雨多尺度特征分析[J].气象与环境学报, 36(3): 1-9.DOI: 10.3969/j.issn.1673-503X.2020.03.001.Lin X , |
null | |
null | 陆婷婷, 崔晓鹏, 2022.2016年北京“7·20”特大暴雨降水物理过程模拟诊断研究[J].大气科学, 46(2): 359-379.DOI: 10.3878/j.issn.1006-9895.2104.20232.Lu T T , |
null | |
null | 潘旸, 沈艳, 宇婧婧, 等, 2012.基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验[J].气象学报, 70(6): 1381-1389.DOI: 10.11676/qxxb2012.116.Pan Y , |
null | |
null | 庆涛, 沈新勇, 黄文彦, 等, 2015.2011年梅汛期一次暴雨过程的对流涡度矢量方程诊断分析[J].高原气象, 34(2): 401-412.DOI: 10.7522/j.issn.1000-0534.2013.00204.Qin T , |
null | |
null | 陶祖钰, 周小刚, 郑永光, 2012.从涡度、 位涡、 到平流层干侵入——位涡问题的缘起、 应用及其歧途[J].气象, 38(1): 28-40.DOI: 10.7519/j.issn.1000-0526.2012.1.003.Tao Z Y , |
null | |
null | 沈新勇, 沙莎, 李小凡, 2018. 一次梅雨锋暴雨过程中多尺度能量相互作用的研究Ⅰ.理论分析[J].大气科学, 42(5): 1109-1118.DOI: 10.3878/j.issn.1006-9895.1710.17195.Shen X Y , |
null | |
null | 肖玉华, 郁淑华, 高文良, 等, 2018.一例伴随西南涡的入海高原涡持续活动成因分析[J].高原气象, 37(6): 1616-1627.DOI: 10.7522/j.issn.1000-0534.2018.00043.Xiao Y H , |
null | |
null | 肖贻青, 娄盼星, 李明娟, 等, 2023.西北涡与西南涡共同作用引发秦巴区域大暴雨的成因分析[J].高原气象, 42(1): 98-107.DOI: 10.7522/j.issn.1000-0534.2022.00013.Xiao Y Q , |
null | |
null | 谢作威, 布和朝鲁, 诸葛安然, 等, 2022.“21·7”河南暴雨暖湿季风输送带加强及关键天气流型的准地转位涡反演[J].大气科学, 46(5): 1147-1166.DOI: 10.3878/j.issn.1006-9895.2205.22039.Xie Z W , BuehC L, ZhugeA R, et al, 2022.An intensification of the warm and moist conveyor belt of the Asian summer monsoon in the “21·7” Henan rainstorm and its key circulation from the quasi-geostrophic potential vorticity perspective[J].Chinese Journal of Atmospheric Sciences, 46(5): 1147-1166.DOI: 10.3878/j.issn.1006-9895.2205.22039 . |
null | 张景, 周玉淑, 沈新勇, 等, 2019.2016年“7.19”京津冀极端降水系统的动热力结构及不稳定条件分析[J].大气科学, 43(4): 930-942.DOI: 10.3878/j.issn.1006-9895.1812.18231.Zhang J , |
null | |
null | 张雅乐, 俞小鼎, 2021.黄河气旋暴雨过程发展演变成因分析[J].高原气象, 40(1): 74-84.DOI: 10.7522/j.issn.1000-0534.2019.00103.Zhang Y L , |
null | |
null | 赵玉春, 李泽椿, 肖子牛, 等, 2007.准静止梅雨锋连续暴雨个例的位涡反演诊断[J].气象学报, 65(3): 353-371.DOI: 10.11676/qxxb2007.034.Zhao Y C , |
null |
/
〈 |
|
〉 |