CLM5.0对青藏高原冻融过程土壤温湿度的模拟及评估
收稿日期: 2023-08-23
修回日期: 2024-04-07
网络出版日期: 2024-04-07
基金资助
国家自然科学基金项目(42075081); 四川省自然科学基金青年项目(2023NSFSC0748); 成都信息工程大学科技创新能力提升计划项目(KYQN202319)
Simulation and Evaluation of Soil Temperature and Moisture during Freeze-thaw Process in Xizang Plateau by CLM5.0
Received date: 2023-08-23
Revised date: 2024-04-07
Online published: 2024-04-07
利用1979 -2018年中国区域地面气象要素驱动数据集(0.1°×0.1°)作为大气强迫资料, 驱动CLM5.0(Community Land Model version 5.0)模拟了青藏高原地区1979 -2018年的土壤温湿度变化。将土壤冻融过程划分为冻结期和非冻结期, 通过两个阶段的CLM5.0模拟与站点观测资料、 同化资料(GLDAS-Noah)、 卫星遥感资料(MODIS土壤温度资料和ESA CCI-COMBINED土壤湿度资料)的对比验证, 探讨CLM5.0模拟土壤温湿度在青藏高原的适用性。结果表明: (1)CLM5.0可较准确地描述站点土壤温湿度的动态变化, CLM5.0模拟的土壤温湿度与观测资料具有一致的变化特征且数值上较为接近。CLM5.0模拟的准确性高于GLDAS-Noah。CLM5.0对站点土壤温度的描述更为准确。(2)CLM5.0能够较准确地描述高原冻融过程中的土壤温湿度特征, CLM5.0模拟土壤温湿度与MODIS和ESA CCI-COMBINED遥感资料在高原总体呈显著正相关, 相关系数大多在0.9以上。CLM5.0对土壤温度的模拟能力相对较好, 对非冻结期土壤湿度的模拟能力优于冻结期。CLM5.0整体高估了土壤温度, 平均偏差大多在0~4 ℃之间。土壤湿度的平均偏差大多在-0.1~0.1 m3·m-3之间, 非冻结期的平均偏差相对较小。(3)CLM5.0模拟、 GLDAS-Noah、 MODIS和ESA CCI-COMBINED遥感资料的土壤温湿度均具有相似的空间分布, 其中土壤温度空间分布特征相似度更高。CLM5.0具有较高的空间分辨率和更为精细的土壤分层, 对土壤温湿度细节的刻画更为完善。(4)CLM5.0模拟资料在高原整体呈增温变干趋势, MODIS和ESA CCI-COMBINED遥感资料整体呈增温增湿趋势。CLM5.0模拟的土壤温度变化趋势相对准确, 土壤湿度的变化趋势则存在较大偏差。
张哲浩 , 赖欣 , 张戈 , 姚思源 , 张粟瑜 . CLM5.0对青藏高原冻融过程土壤温湿度的模拟及评估[J]. 高原气象, 2025 , 44(1) : 32 -45 . DOI: 10.7522/j.issn.1000-0534.2024.00057
The China Meteorological Forcing Dataset(0.1°×0.1°) from 1979 -2018 was used as atmospheric forcing data to drive CLM5.0 (Community Land Model version 5.0) to simulate soil temperature and moisture changes in the Qinghai-Xizang Plateau region from 1979 to 2018.Divide the soil freeze-thaw process into two stages: freezing period and thawing period.By comparing and validating CLM5.0 simulation with site observation data, assimilation data (GLDAS-Noah), and satellite remote sensing data (MODIS soil temperature data and ESA CCI-COMBINED soil moisture data) in two stages, this study explores the applicability of CLM5.0 simulation of soil temperature and moisture in the Qinghai-Xizang Plateau.The results indicate that: (1) CLM5.0 can accurately describe the dynamic changes in soil temperature and moisture at stations on the Qinghai-Xizang Plateau.The soil temperature and moisture simulated by CLM5.0 have consistent variation characteristics with the observed data and are numerically close.The accuracy of CLM5.0 simulation is higher than that of GLDAS Noah.CLM5.0 provides a more accurate description of soil temperature at the stations.(2) CLM5.0 can accurately describe the soil temperature and moisture characteristics during the freeze-thaw process in the Qinghai-Xizang Plateau.CLM5.0 simulated soil temperature and moisture show a significant positive correlation with MODIS and ESA CCI-COMBINED remote sensing data on the Qinghai-Xizang Plateau, with correlation coefficients mostly above 0.9.CLM5.0 has relatively better simulation ability for soil temperature in Qinghai-Xizang Plateau areas.CLM5.0 has better simulation ability for soil moisture during thawing periods than during freezing periods.CLM5.0 overestimates the soil temperature of the Qinghai-Xizang Plateau as a whole, with an average deviation mostly between 0~4 ℃.The average deviation of soil moisture simulated by CLM5.0 is mostly between -0.1~0.1 m3·m-3, and the average deviation of soil moisture during thawing period is relatively small.(3) The soil temperature and moisture data from CLM5.0 simulation, GLDAS-Noah, MODIS, and ESA CCI-COMBINED remote sensing all have similar spatial distribution characteristics, with higher similarity in the spatial distribution characteristics of soil temperature.CLM5.0 has higher spatial resolution and more precise soil stratification, which can better describe the details of soil temperature and moisture.(4) The CLM5.0 simulation data shows an overall warming and drying trend in the Qinghai-Xizang Plateau, while the MODIS and ESA CCI-COMBINED remote sensing data show an overall warming and moistening trend.The trend of soil temperature changes simulated by CLM5.0 is relatively accurate, while there is a greater deviation in the trend of soil moisture changes.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈渤黎, 罗斯琼, 吕世华, 等, 2017.基于CLM模式的青藏高原土壤冻融过程陆面特征研究[J].冰川冻土, 39(4): 760-770.DOI: 10.7522/j.issn.1000-0240.2017.0086.Chen B L , |
null | |
null | |
null | |
null | 符晴, 阳坤, 郑东海, 等, 2022.青藏高原中部土壤有机质含量对不同深度土壤温湿度的影响研究[J].高原气象, 41(5): 1097-1108.DOI: 10.7522/j.issn.1000-0534.2021.00039.Fu Q , |
null | |
null | 李蓉蓉, 赵平, 2023.青藏高原非冻结期观测的土壤湿度和模式产品的对比分析[J].气象与环境科学, 46(1): 39-47.Doi: 10.16765j.cnki.1673-7148.2023.01.006.Li R R , |
null | |
null | 李时越, 杨凯, 王澄海, 2018.陆面模式CLM4.5在青藏高原土壤冻融期的偏差特征及其原因[J].冰川冻土, 40(2): 322-334.DOI: 10.7522/j.issn.1000-0240.2018.0037.Li S Y , |
null | |
null | 刘川, 余晔, 解晋, 等, 2015.多套土壤温湿度资料在青藏高原的适用性[J].高原气象, 34(3): 653-665.DOI: 10.7522/j.issn.1000-0534.2015.00034.Liu C , |
null | |
null | 刘闻慧, 文军, 陈金雷, 等, 2022.青藏高原土壤冻融过程关键参量时空分布特征分析[J].高原气象, 41(1): 11-23.DOI: 10.7522/j.issn.1000-0534.2021.00024.Liu W H , |
null | |
null | 罗红羽, 于海鹏, 胡泽勇, 等, 2023.青藏高原热源对我国旱区气候异常影响研究进展[J].高原气象, 42(2): 257-271.DOI: 10.7522/j.issn.1000-0534.2022.00070.Luo H Y , |
null | |
null | 满子豪, 翁白莎, 杨裕恒, 等, 2020.青藏高原冻融过程期划分及发展趋势研究[J].水电能源科学, 38(7): 16-19+29.DOI: 1000-7709(2020)07-0016-04.Man Z H , |
null | |
null | 王静, 祁莉, 何金海, 等, 2016.青藏高原春季土壤湿度与我国长江流域夏季降水的联系及其可能机理[J].地球物理学报, 59(11): 3985-3995.DOI: 10.6038/cjg20161105.Wang J , |
null | |
null | 夏坤, 罗勇, 李伟平, 2011.青藏高原东北部土壤冻融过程的数值模拟[J].科学通报, 56(22): 1828-1838.DOI: 10.1007/sl1434-011-4542-8.Xia K , |
null | |
null | 徐洪亮, 常娟, 郭林茂, 等, 2021.青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J].高原气象, 40(2): 229-243.DOI: 10.7522/j.issn.1000-0534.2020.00071.Xu H L , |
null | |
null | 杨淑华, 吴通华, 李韧, 等, 2018.青藏高原近地表土壤冻融状况的时空变化特征[J].高原气象, 37(1): 43-53.DOI: 10.7522/j.issn.1000-0534.2017.00043.Yang S H , |
null | |
null | 袁源, 赖欣, 巩远发, 等, 2019.CLM4.5模式对青藏高原土壤湿度的数值模拟及评估[J].大气科学, 43(3): 676-690.DOI: 10.3878/j.issn.1006-9895.180&18143.Yuan Y , |
null | |
null | 张戈, 赖欣, 刘康, 2023.黄河源区玛曲土壤冻融过程中地表水热交换特征分析[J].高原气象, 42(3): 575-589.DOI: 10.7522/j.issn.1000-0534.2022.00083.Zhang G , |
null | |
null | 赵林, 胡国杰, 邹德富, 等, 2019.青藏高原多年冻土变化对水文过程的影响[J].中国科学院院刊, 34(11): 1233-1246.DOI: 10.16418/j.issn.1000-3045.2019.11.006.Zhao L , |
null | |
null | 周志雄, 周凤玺, 张明礼, 等, 2023.季节降雨特征对青藏高原中部冻土活动层的水热影响[J].高原气象, 42(5): 1172-1181.DOI: 10.7522/j.issn.1000-0534.2023.00017.Zhou Z X , |
null |
/
〈 |
|
〉 |