基于多层感知机模型的长三角水稻种植区净生态系统碳通量模拟

  • 席闻阳 ,
  • 何建军 ,
  • 王智麟 ,
  • 郭立峰 ,
  • 李亚荣
展开
  • 1. 中国气象科学研究院,灾害天气国家重点实验室/中国气象局大气化学重点开放实验室,北京 200081
    2. 海南大学,海洋科学与工程学院,海南 海口 570228
    3. 南京信息工程大学,计算机与软件学院,江苏 南京 210044
    4. 兰州大学大气科学学院,甘肃 兰州 730000

席闻阳(1999 -), 女, 辽宁抚顺人, 硕士研究生, 主要从事陆面碳循环过程与碳平衡模拟研究. E-mail:

收稿日期: 2024-03-19

  修回日期: 2024-04-07

  网络出版日期: 2024-04-07

基金资助

国家自然科学基金重大项目(42090031); 国家自然科学基金面上项目(41975131)

Simulation of Net Ecosystem Carbon Flux in Rice Planting Area of Yangtze River Delta based on Multi-layer Perceptron Model

  • Wenyang XI ,
  • Jianjun HE ,
  • Zhilin WANG ,
  • Lifeng GUO ,
  • Yarong LI
Expand
  • 1. State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences/Key Laboratory of Atmospheric Chemistry,China Meteorological Administration,Beijing 200081,China
    2. College of Marine Science and Engineering,Hainan University,Haikou 570228,Hainan,China
    3. School of Computer Science and Software,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China
    4. School of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,Gansu,China

Received date: 2024-03-19

  Revised date: 2024-04-07

  Online published: 2024-04-07

摘要

中国长江三角洲地区(以下简称长三角地区)是典型的水稻种植区, 其碳源汇对区域气候和环境具有重要影响。本文系统地分析了长三角地区净生态系统碳交换量 (net ecosystem exchange, NEE)与各个气象因子之间的关系, 发现NEE与太阳短波辐射的相关性最强, 其次与湿度相关参量(饱和水汽压差、 相对湿度)等呈现较强的相关性。同时, NEE与太阳辐射、 气温、 湿度因子、 风速和摩擦速度的相关性呈现明显的昼夜变化。基于上述分析, 本文利用NEE和气象观测数据构建了长三角水稻下垫面多层感知机(Multilayer perceptron, MLP)NEE模拟模型, 评估了模型的模拟效果及其时空稳定性。构建的MLP模型能较好地拟合NEE, 训练集模拟的NEE与观测值的相关系数达到0.88, 均方根误差为5.34 μmol·m-2·s-1; MLP模型在模拟长三角水稻季NEE时表现良好, 在东台和寿县站点的模拟NEE结果与观测值的相关系数均高于0.78, 模型具有较好的时空稳定性; MLP模型模拟白天平均NEE的效果好于夜间平均NEE的效果。研究结果揭示了影响水稻碳循环的主要气象因子, 为认识长三角水稻种植区碳循环时空分布特征提供支撑, 对准确评估全球和区域碳通量具有重要意义。

本文引用格式

席闻阳 , 何建军 , 王智麟 , 郭立峰 , 李亚荣 . 基于多层感知机模型的长三角水稻种植区净生态系统碳通量模拟[J]. 高原气象, 2025 , 44(1) : 191 -200 . DOI: 10.7522/j.issn.1000-0534.2024.00056

Abstract

The Yangtze River Delta in China is a typical rice planting area, and its carbon source and sink have significant impacts on regional climate and environment.This study systematically examines the relationship between NEE and various meteorological factors in the Yangtze River Delta region and reveals that NEE exhibits the strongest correlation with solar short-wave radiation (R=-0.68), followed by a robust linear association with humidity-related parameters (saturated water vapor pressure difference, relative humidity).Additionally, diurnal variations are evident in the correlations between NEE and solar radiation, temperature, humidity factor, wind speed, and friction velocity.Based on these analyses, this paper constructed a multi-layer perceptron (MLP) model for simulating rice undersurface NEE in the Yangtze River Delta using observed NEE data alongside meteorological observations.The simulation performance and spatiotemporal stability of this model are evaluated.Results demonstrate that the constructed MLP model effectively captures NEE patterns; it achieves an R value of 0.88 with respect to observed values within the training set while maintaining an RMSE of 5.34 μmol·m-2·s-1.Moreover, this MLP model performs well when predicting NEE in the Yangtze River Delta region as evidenced by high correlation coefficients (>0.78) between simulated results and observations at Dongtai and Shouxian stations-indicating good spatiotemporal stability of the model's predictions.Notably, this MLP model demonstrates superior performance when capturing daily variations in daytime mean NEE compared to nighttime mean values.The research results reveal the main meteorological factors affecting rice carbon cycling, provide support for understanding the spatiotemporal distribution characteristics of carbon cycling in rice planting areas of the Yangtze River Delta, and have important significance for accurately evaluating global and regional carbon flux.

参考文献

null
Baldocchi D Falge E Gu L, et al, 2001.Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J].Bulletin of the American Meteorological Society, 82: 2415-2434.DOI: 10.1175/1520-0477(2001)082<2415: FANTTS>2.3.CO; 2 .
null
Chen W Wang S Wang J, et al, 2023.Evidence for widespread thermal optimality of ecosystem respiration[J].Nature Ecology & Evolution, 7: 1379-1387.
null
Dai H Huang G Zeng H, et al, 2022.PM2.5 volatility prediction by XGBoost-MLP based on GARCH models[J].Journal of Cleaner Production, 356: 131898.DOI: 10.1016/j.jclepro. 2022.131898 .
null
Diao Y Huang J Liu C, et al, 2015.A modeling study of CO2 flux and concentrations over the Yangtze River delta using the WRF-GHG Model[J].Chinese Journal of Atmospheric Sciences (in Chinese)39(5): 849-860.DOI: 10.3878/j.issn.1006-9895. 1409.14127 .
null
Duan Z Gao Z Xu Q, et al, 2022.A benchmark dataset of diurnal- and seasonal-scale radiation, heat, and CO2 fluxes in a typical East Asian monsoon region[J].Earth System Science Data, 14: 4153-4169.DOI: 10.5194/essd-14-4153-2022 .
null
Duan Z Yang Y Zhou S, et al, 2021.Estimating gross primary productivity (GPP) over rice-wheat-rotation croplands by using the random forest model and eddy covariance measurements: upscaling and comparison with the MODIS product[J].Remote Sensing, 13: 4229.DOI: 10.3390/rs13214229 .
null
Fernández-Martínez M Sardans J Chevallier F, et al, 2019.Global trends in carbon sinks and their relationships with CO2 and temperature[J].Nature Climate Change, 9: 73-79.DOI: 10.1038/s41558-018-0367-7 .
null
Fukai S Cooper M1995.Development of drought-resistant cultivars using physiomorphological traits in rice[J].Field Crops Research, 40: 67-86.DOI: 10.1016/0378-4290(94)00096-U .
null
Huang N Wang L Zhang Y, et al, 2021.Estimating the net ecosystem exchange at global FLUXNET sites using a random forest model[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 9826-9836.DOI: 10.1109/JSTARS.2021.3114190 .
null
IPCC, 2023.Future global climate: scenario-based projections and near-term information[R].Climate Change 2021-The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press, Cambridge, 553-672.DOI: 10. 1017/9781009157896.006 .
null
Jiang F Chen J M Zhou L, et al, 2016.A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches[J].Scientific Reports, 6: 22130.DOI: 10.1038/srep22130 .
null
Liang W Zhang W Jin Z, et al, 2019.Estimation of global grassland net ecosystem carbon exchange using a model tree ensemble approach[J].Journal of Geophysical Research: Biogeosciences125(1).DOI: 10.1029/2019JG005034 .
null
Long R R1976.Relation between nusselt number and rayleigh number in turbulent thermal convection[J].Journal of Fluid Mechanics73(3): 445-451.DOI: 10.1017/S0022112076001444 .
null
F C Ma J Y Cao Y al et2022.Carbon fluxes simulation of China's typical forest ecosystem based on FORCCHN model[J].Acta Ecologica Sinica, 2022, 42(7): 2810-2821.DOI: 10. 5846/stxb202102070399 .
null
Piao S Ito A Li S, et al, 2012.The carbon budget of terrestrial ecosystems in East Asia over the last two decades[J].Biogeosciences, 9: 3571-3586.DOI: 10.5194/bg-9-3571-2012 .
null
Qi C R Su H Nie?ner M, et al, 2016.Volumetric and multi-view CNNs for object classification on 3D data[J].IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5648-5656.DOI: 10.1109/CVPR.2016.609 .
null
Qi Y Wei D Zhao H, et al, 2021.Carbon sink of a very high marshland on the Tibetan Plateau[J].Journal of Geophysical Research: Biogeosciences126(4).DOI: 10.1029/2020JG006235 .
null
Saxe A M Mcclelland J L Ganguli S J C S, et al, 2014.Exact solutions to the nonlinear dynamics of learning in deep linear neural networks[J]Computer Science, 1-22.DOI: 10.48550/arXiv. 1312.6120 .
null
Shi Z Crowell S Luo Y, et al, 2018.Model structures amplify uncertainty in predicted soil carbon responses to climate change[J].Nature Communications, 9: 2171.DOI: 10.1038/s41467-018-04526-9 .
null
Tang X Zhao X Bai Y, et al, 2018.Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey[J].Proceedings of the National Academy of Sciences115(12): 4021-4026.DOI: 10.1073/pnas.1700291115 .
null
Werner V V Schneider A J A Dos S C R, et al, 2023.Imbalanced data preprocessing techniques for machine learning: a systematic mapping study[J].Knowledge and Information Systems, 65: 31-57.DOI: 10.1007/s10115-022-01772-8 .
null
Yang Y Li T Pokharel P, et al, 2022.Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate[J].Soil Biology and Biochemistry, 174: 108814.DOI: 10. 1016/j.soilbio.2022.108814 .
null
Yao Y Li Z Wang T, et al, 2018.A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach[J].Agricultural and Forest Meteorology253-254: 84-93.DOI: 10.1016/j.agrformet. 2018.02.007 .
null
Zeng J Matsunaga T Tan Z-H, et al, 2020.Global terrestrial carbon fluxes of 1999-2019 estimated by upscaling eddy covariance data with a random forest[J].Scientific Data7(1): 313.DOI: 10. 1038/s41597-020-00653-5 .
null
Zhang W Luo G Yuan X, et al, 2023.New data-driven method for estimation of net ecosystem carbon exchange at meteorological stations effectively increases the global carbon flux data[J].Methods in Ecology and Evolution14(9): 2449-2463.DOI: 10. 1111/2041-210X.14188 .
null
Zhou Q Fellows A Flerchinger G N, et al, 2019.Examining interactions between and among predictors of net ecosystem exchange: a machine learning approach in a semi-arid landscape[J].Scientific Reports9(1): 2222.DOI: 10.1038/s41598-019-38639-y .
null
陈永义, 俞小鼎, 高学浩, 等, 2004.处理非线性分类和回归问题的一种新方法 (Ⅰ)——支持向量机方法简介[J].应用气象学报15(3): 345-354.DOI: 10.3969/j.issn.1001-7313.2004.03.012.Chen Y Y
null
Yu X D Gao X H, et al, 2004.A new method for non-linear classify and non-linear regression I: Introduction to support vector machine[J].Journal of Applied Meteorological Science15(3): 345-354.DOI: 10.3969/j.issn.1001-7313.2004.03.012 .
null
郭仕侗, 韦志刚, 王欢, 2023.珠海凤凰山常绿阔叶林CO2通量与光合有效辐射及气象因子的关系[J].高原气象42(3): 795-808.DOI: 10.7522/j.issn.1000-0534.2022.00051.Guo S T
null
Wei Z G Wang H2023.Relationship between CO2 flux, photosynthetically active radiation and meteorological factors in evergreen broad-leaved forest in the Phoenix Mountain area of Zhuhai[J].Plateau Meteorology42(3): 795-808.DOI: 10.7522/j.issn.1000-0534.2022.00051 .
null
胡昕利, 易扬, 康宏樟, 等, 2019.近25 年长江中游地区土地利用时空变化格局与驱动因素[J].生态学报39(6): 1877-1886.DOI: 10.5846/stxb201809302138.Hu X L
null
Yi Y Kang H Z, et al, 2019.Temporal and spatial variations of land use and the driving factors in the middle reaches of the Yangtze River in the past 25 years[J].Acta Ecologica Sinica39(6): 1877-1886.DOI: 10.5846/stxb201809302138 .
null
刘辉志, 王雷, 杜群, 2018.大气边界层物理研究进展 (2012~2017年)[J].大气科学42(4): 823-832.DOI: 10.3878/j.issn.1006-9895.1802.17274.Liu H Z
null
Wang L Du Q2018.An overview of recent studies on atmospheric boundary layer physics (2012-2017)[J].Chinese Journal of Atmospheric Sciences42(4): 823-832.DOI: 10.3878/j.issn.1006-9895.1802.17274 .
null
刘坤, 张慧, 孔令辉, 等, 2023.陆地生态系统碳汇评估方法研究进展[J].生态学报43(10): 4294-4307.DOI: 10.5846/stxb202204020842.Liu K
null
Zhang H Kong L H al et2023.An overview of terrestrial ecosystem carbon sink assessment methods towards achieving carbon neutrality in China[J].Acta Ecologica Sinica43(10): 4294-4307.DOI: 10.5846/stxb202204020842 .
null
刘毅, 王婧, 车轲, 等, 2021.温室气体的卫星遥感—进展与趋势[J].遥感学报25(1): 53-64.DOI: 10.11834/jrs.20210081.Liu Y
null
Wang J Che K, et al, 2021.Satellite remote sensing of greenhouse gases: progress and trends[J].National Remote Sensing Bulletin25(1): 53-64 DOI: 10.11834/jrs.20210081 .
null
宋清海, 张一平, 谭正洪, 等, 2010.热带季节雨林生态系统净光合作用特征及其影响因子[J].应用生态学报 12: 8.DOI: http: //ir.xtbg.org.cn/handle/353005/1010.Song Q H
null
Zhang Y P Tan Z H, et al, 2010.Net photosynthesis and its affecting factors in a tropical seasonal rainforest ecosystem in Southwest China[J].Journal of Applied Meteorological Science, 12: 8.DOI: http: //ir.xtbg.org.cn/handle/353005/1010 .
null
孙敏洁, 刘维红, 林茂松, 2009.温度和湿度及水稻不同生育期对水稻干尖线虫垂直迁移的影响[J].中国水稻科学23(3): 304-308.
null
Sun M J Liu W H Lin M S2009.Effects of temperature, humidity and different growth stages of rice on the vertical migration of aphelenchoides besseyi[J].Chinese Journal of Rice Science23(3): 304-308.
null
王琛智, 张朝, 张静, 等, 2018.湖南省地形因素对水稻生产的影响[J].地理学报73(9): 1792-1808.DOI: 10.11821/dlxb201809014.Wang C Z
null
Zhang Z Zhang J, et al, 2018.The effect of terrain factors on rice production: a case study in Hunan Province[J].Acta Geographica Sinica73(9): 1792-1808.DOI: 10.11821/dlxb201809014 .
null
王玺洋, 于东升, 廖丹, 等, 2016.长三角典型水稻土有机碳组分构成及其主控因子[J].生态学报36(15): 4729-4738.
null
Wang X Y Yu D S Liao D, et al, 2016.Characteristics of typical paddy soil organic carbon fractions and their main control factors in the Yangtze River Delta[J].Acta Ecologica Sinica36(15): 4729-4738.
null
夏侯杰, 肖安, 聂道洋, 2023.基于观测的短时强降水深度学习预报模型[J].高原气象, 42: 1005-1017.DOI: 10.7522/j.issn.1000-0534.2022.00046.Xia H J
null
Xiao A Nie D Y2023.Observation based deep learning model for short-duration heavy rain nowcasting[J].Plateau Meteorology42(4): 1005-1017.DOI: 10.7522/j.issn.1000-0534.2022.00046 .
null
叶宇辰, 陈海山, 朱司光, 等, 2024.基于机器学习的中国夏季降水延伸期预报及土壤湿度的可能贡献[J].高原气象43(1): 184-198.
null
doi: 10.7522/j.issn.1000-0534.2023.00025.Ye Y C Chen H S Zhu S G, et al, 2024.Machine learning-based prediction of summer extended-range precipitation and possible contribution of soil moisture over China[J].Plateau Meteorology43(1): 184-198.DOI: 10.7522/j.issn.1000-0534.2023.00025 .
null
游桂莹, 张志渊, 张仁铎, 2018.全球陆地生态系统光合作用与呼吸作用的温度敏感性[J].生态学报38(23): 8392-8399.DOI: 10.5846/stxb201801100071.You G Y
null
Zhang Z Y Zhang R D2018.Temperature sensitivity of photosynthesis and respiration in terrestrial ecosystems globally[J].Acta Ecologica Sinica38(23): 8392-8399.DOI: 10.5846/stxb201801100071 .
null
于贵瑞, 张雷明, 孙晓敏, 2014.中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望[J].地理科学进展33(7): 903-917.DOI: 10.11820/dlkxjz.2014.07.005.Yu G R
null
Zhang L M Sun X M2014.Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX)[J].Progress in Geography33(7): 903-917.DOI: 10.11820/dlkxjz.2014.07.005 .
null
张彩霞, 谢高地, 甄霖, 等, 2011.2000-2025年环境保护政策情景下中国陆地碳储量估算[J].资源与生态学报(英文版)2(4): 315-321.DOI: 10.3969/j.issn.1674-764x.2011.04.004.Zhang C X
null
Xie G D Zhen L, et al, 2011.Estimates of variation in Chinese terrestrial carbon storage under an environmental conservation policy scenario for 2000-2025[J].Journal of Resources and Ecology2(4): 315-321.DOI: 10.3969/j.issn.1674-764x.2011.04.004 .
null
赵明月, 刘源鑫, 张雪艳, 2022.农田生态系统碳汇研究进展[J].生态学报42(23): 9405-941.DOI: 10.5846/stxb202203280762. Zhao M Y
null
Liu Y X Zhang X Y2022.A review of research advances on carbon sinks in farmland ecosystems[J].Acta Ecologica Sinica42(23): 9405-9416.DOI: 10.5846/stxb202203280762 .
null
朱志鹍, 马耀明, 胡泽勇, 等, 2015.青藏高原那曲高寒草甸生态系统CO2净交换及其影响因子[J]. 高原气象34(5): 1217-1223.DOI: 10.7522/j.issn.1000-0534.2014.00135.Zhu Z K
null
Ma Y M Hu Z Y, et al, 2015.Net ecosystem carbon dioxide exchange in alpine meadow of Nagchu Region over Qinghai-Xizang Plateau[J].Plateau Meteorology34(5): 1217-1223.DOI: 10.7522/j.issn.1000-0534.2014.00135 .
文章导航

/