基于多层感知机模型的长三角水稻种植区净生态系统碳通量模拟
收稿日期: 2024-03-19
修回日期: 2024-04-07
网络出版日期: 2024-04-07
基金资助
国家自然科学基金重大项目(42090031); 国家自然科学基金面上项目(41975131)
Simulation of Net Ecosystem Carbon Flux in Rice Planting Area of Yangtze River Delta based on Multi-layer Perceptron Model
Received date: 2024-03-19
Revised date: 2024-04-07
Online published: 2024-04-07
中国长江三角洲地区(以下简称长三角地区)是典型的水稻种植区, 其碳源汇对区域气候和环境具有重要影响。本文系统地分析了长三角地区净生态系统碳交换量 (net ecosystem exchange, NEE)与各个气象因子之间的关系, 发现NEE与太阳短波辐射的相关性最强, 其次与湿度相关参量(饱和水汽压差、 相对湿度)等呈现较强的相关性。同时, NEE与太阳辐射、 气温、 湿度因子、 风速和摩擦速度的相关性呈现明显的昼夜变化。基于上述分析, 本文利用NEE和气象观测数据构建了长三角水稻下垫面多层感知机(Multilayer perceptron, MLP)NEE模拟模型, 评估了模型的模拟效果及其时空稳定性。构建的MLP模型能较好地拟合NEE, 训练集模拟的NEE与观测值的相关系数达到0.88, 均方根误差为5.34 μmol·m-2·s-1; MLP模型在模拟长三角水稻季NEE时表现良好, 在东台和寿县站点的模拟NEE结果与观测值的相关系数均高于0.78, 模型具有较好的时空稳定性; MLP模型模拟白天平均NEE的效果好于夜间平均NEE的效果。研究结果揭示了影响水稻碳循环的主要气象因子, 为认识长三角水稻种植区碳循环时空分布特征提供支撑, 对准确评估全球和区域碳通量具有重要意义。
席闻阳 , 何建军 , 王智麟 , 郭立峰 , 李亚荣 . 基于多层感知机模型的长三角水稻种植区净生态系统碳通量模拟[J]. 高原气象, 2025 , 44(1) : 191 -200 . DOI: 10.7522/j.issn.1000-0534.2024.00056
The Yangtze River Delta in China is a typical rice planting area, and its carbon source and sink have significant impacts on regional climate and environment.This study systematically examines the relationship between NEE and various meteorological factors in the Yangtze River Delta region and reveals that NEE exhibits the strongest correlation with solar short-wave radiation (R=-0.68), followed by a robust linear association with humidity-related parameters (saturated water vapor pressure difference, relative humidity).Additionally, diurnal variations are evident in the correlations between NEE and solar radiation, temperature, humidity factor, wind speed, and friction velocity.Based on these analyses, this paper constructed a multi-layer perceptron (MLP) model for simulating rice undersurface NEE in the Yangtze River Delta using observed NEE data alongside meteorological observations.The simulation performance and spatiotemporal stability of this model are evaluated.Results demonstrate that the constructed MLP model effectively captures NEE patterns; it achieves an R value of 0.88 with respect to observed values within the training set while maintaining an RMSE of 5.34 μmol·m-2·s-1.Moreover, this MLP model performs well when predicting NEE in the Yangtze River Delta region as evidenced by high correlation coefficients (>0.78) between simulated results and observations at Dongtai and Shouxian stations-indicating good spatiotemporal stability of the model's predictions.Notably, this MLP model demonstrates superior performance when capturing daily variations in daytime mean NEE compared to nighttime mean values.The research results reveal the main meteorological factors affecting rice carbon cycling, provide support for understanding the spatiotemporal distribution characteristics of carbon cycling in rice planting areas of the Yangtze River Delta, and have important significance for accurately evaluating global and regional carbon flux.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | IPCC, 2023.Future global climate: scenario-based projections and near-term information[R].Climate Change 2021-The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press, Cambridge, 553-672.DOI: 10. 1017/9781009157896.006 . |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈永义, 俞小鼎, 高学浩, 等, 2004.处理非线性分类和回归问题的一种新方法 (Ⅰ)——支持向量机方法简介[J].应用气象学报, 15(3): 345-354.DOI: 10.3969/j.issn.1001-7313.2004.03.012.Chen Y Y , |
null | |
null | 郭仕侗, 韦志刚, 王欢, 2023.珠海凤凰山常绿阔叶林CO2通量与光合有效辐射及气象因子的关系[J].高原气象, 42(3): 795-808.DOI: 10.7522/j.issn.1000-0534.2022.00051.Guo S T , |
null | |
null | 胡昕利, 易扬, 康宏樟, 等, 2019.近25 年长江中游地区土地利用时空变化格局与驱动因素[J].生态学报, 39(6): 1877-1886.DOI: 10.5846/stxb201809302138.Hu X L , |
null | |
null | 刘辉志, 王雷, 杜群, 2018.大气边界层物理研究进展 (2012~2017年)[J].大气科学, 42(4): 823-832.DOI: 10.3878/j.issn.1006-9895.1802.17274.Liu H Z , |
null | |
null | 刘坤, 张慧, 孔令辉, 等, 2023.陆地生态系统碳汇评估方法研究进展[J].生态学报, 43(10): 4294-4307.DOI: 10.5846/stxb202204020842.Liu K , |
null | |
null | |
null | |
null | 宋清海, 张一平, 谭正洪, 等, 2010.热带季节雨林生态系统净光合作用特征及其影响因子[J].应用生态学报 12: 8.DOI: http: //ir.xtbg.org.cn/handle/353005/1010.Song Q H , |
null | |
null | 孙敏洁, 刘维红, 林茂松, 2009.温度和湿度及水稻不同生育期对水稻干尖线虫垂直迁移的影响[J].中国水稻科学, 23(3): 304-308. |
null | |
null | 王琛智, 张朝, 张静, 等, 2018.湖南省地形因素对水稻生产的影响[J].地理学报, 73(9): 1792-1808.DOI: 10.11821/dlxb201809014.Wang C Z , |
null | |
null | 王玺洋, 于东升, 廖丹, 等, 2016.长三角典型水稻土有机碳组分构成及其主控因子[J].生态学报, 36(15): 4729-4738. |
null | |
null | 夏侯杰, 肖安, 聂道洋, 2023.基于观测的短时强降水深度学习预报模型[J].高原气象, 42: 1005-1017.DOI: 10.7522/j.issn.1000-0534.2022.00046.Xia H J , |
null | |
null | 叶宇辰, 陈海山, 朱司光, 等, 2024.基于机器学习的中国夏季降水延伸期预报及土壤湿度的可能贡献[J].高原气象, 43(1): 184-198. |
null | |
null | 游桂莹, 张志渊, 张仁铎, 2018.全球陆地生态系统光合作用与呼吸作用的温度敏感性[J].生态学报, 38(23): 8392-8399.DOI: 10.5846/stxb201801100071.You G Y , |
null | |
null | 于贵瑞, 张雷明, 孙晓敏, 2014.中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望[J].地理科学进展, 33(7): 903-917.DOI: 10.11820/dlkxjz.2014.07.005.Yu G R , |
null | |
null | 张彩霞, 谢高地, 甄霖, 等, 2011.2000-2025年环境保护政策情景下中国陆地碳储量估算[J].资源与生态学报(英文版), 2(4): 315-321.DOI: 10.3969/j.issn.1674-764x.2011.04.004.Zhang C X , |
null | |
null | 赵明月, 刘源鑫, 张雪艳, 2022.农田生态系统碳汇研究进展[J].生态学报, 42(23): 9405-941.DOI: 10.5846/stxb202203280762. Zhao M Y , |
null | |
null | 朱志鹍, 马耀明, 胡泽勇, 等, 2015.青藏高原那曲高寒草甸生态系统CO2净交换及其影响因子[J]. 高原气象, 34(5): 1217-1223.DOI: 10.7522/j.issn.1000-0534.2014.00135.Zhu Z K , |
null |
/
〈 |
|
〉 |