利用探空观测评估北半球卫星及再分析对流层臭氧数据

  • 杨景怡 ,
  • 田文寿 ,
  • 雒佳丽 ,
  • 段佳康 ,
  • 何昕
展开
  • 兰州大学大气科学学院,甘肃 兰州 730000

杨景怡(1999 -), 女, 甘肃兰州人, 硕士研究生, 主要从事对流层臭氧的研究.E-mail:

收稿日期: 2024-01-14

  修回日期: 2024-04-25

  网络出版日期: 2024-04-25

基金资助

国家自然科学基金重点项目(42130601)

Validation of Tropospheric Ozone from Satellite and Reanalysis Data Based on Ozonesondes Observations

  • Jingyi YANG ,
  • Wenshou TIAN ,
  • Jiali LUO ,
  • Jiakang DUAN ,
  • Xin HE
Expand
  • College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,Gansu,China

Received date: 2024-01-14

  Revised date: 2024-04-25

  Online published: 2024-04-25

摘要

对流层臭氧是一种污染气体, 也是重要的温室气体, 它可以影响人类健康、 严重危害生态环境。本研究利用WOUDC(The World Ozone and Ultraviolet Radiation Data Centre)发布的臭氧探空观测数据, 评估了2007 -2018年北半球地区GOME-2A(Global Ozone Monitoring Experiment 2 aboard METOP-A)、 OMI(Ozone Monitoring Instrument)卫星的对流层臭氧柱含量产品以及TCR-2(Updated Tropospheric Chemistry Reanalysis)再分析对流层臭氧产品。分析结果表明, 在赤道美洲地区、 亚热带地区、 欧洲西部和加拿大地区, GOME-2A与探空观测之间的相关系数最高可达0.56, 相对偏差百分比绝对值不超过15%; 在加拿大地区、 美国东部地区和欧洲西部地区, OMI与探空观测之间的相关系数为0.65~0.72, 标准化的均方根误差为0.47~0.56; 就整个北半球区域而言, TCR-2对流层臭氧柱含量与探空观测之间的相关系数为0.41~0.95, 标准化的均方根误差为0.18~0.48, 优于其他两种卫星资料。此外, 进一步探讨对流层臭氧柱含量趋势结果发现, TCR-2对流层臭氧柱含量变化趋势与探空观测结果较为一致。利用评估后的数据进一步分析发现, 在赤道美洲地区、 欧洲西部地区和中国地区对流层臭氧柱含量增加, 而近年来在北极地区、 加拿大地区和美国东部地区对流层臭氧柱含量减少。

本文引用格式

杨景怡 , 田文寿 , 雒佳丽 , 段佳康 , 何昕 . 利用探空观测评估北半球卫星及再分析对流层臭氧数据[J]. 高原气象, 2025 , 44(1) : 95 -109 . DOI: 10.7522/j.issn.1000-0534.2024.00054

Abstract

Tropospheric ozone is an important air pollutant and greenhouse gas.It is harmful to human health and seriously harm the ecological environment.In this study, we use ozonesondes data from WOUDC (World Ozone and Ultraviolet Radiation Data Centre) during 2007 -2018 to evaluate tropospheric ozone column products from GOME-2A (Global Ozone Monitoring Experiment 2 aboard METOP-A) and Ozone Monitoring Instrument (OMI) satellite, as well as tropospheric ozone products from Updated Tropospheric Chemistry Reanalysis (TCR-2).The results of the analysis show that in the equatorial American, subtropical, western European and Canadian regions, the correlation coefficients between GOME-2A and ozonesondes observations are up to 0.56, and the absolute values of the relative percentage deviations do not exceed 15%; in the eastern US.and western European regions, the correlation coefficients between OMI and ozonesondes observations are 0.65~0.72, and the standardized root-mean-square errors are 0.47~0.56; for the whole Northern Hemisphere region, the correlation coefficients between the TCR-2 tropospheric ozone column content and ozonesondes observations are 0.41~0.95, with standardized root-mean-square errors (RMSEs) of 0.18~0.48, which are better than the other two satellite data.Furthermore, the results indicate that the TCR-2 tropospheric ozone column trend is consistent with the trend direction of the ozonesondes observations.Through a more robust data assessment, it is evident that tropospheric ozone columns have increased in the equatorial Americas, Western Europe and China.Conversely, there has been a decrease in tropospheric ozone columns in the Arctic, Canada and the eastern United States.

参考文献

null
Adame J A Serrano E Bolívar J P, et al, 2010.On the tropospheric ozone variations in a coastal area of southwestern Europe under a mesoscale circulation[J].Journal of Applied Meteorology and Climatology49(4): 748-759.DOI: 10.1175/2009jamc2097.1 .
null
Ancellet G Godin-Beekmann S Smit H G J, et al, 2022.Homogenization of the observatoire de Haute provence electrochemical concentration cell (ECC) ozonesonde data record: comparison with lidar and satellite observations[J].Atmospheric Measurement Techniques15(10): 3105-3120.DOI: 10.5194/amt-15-3105-2022 .
null
Callies J Corpaccioli E Eisinger M2000.GOME-2-metop’s second-generation sensor for operational ozone monitoring[J].ESA Bulletin-European Space Agency, (102): 28-36.DOI.
null
Dee D P Uppala S M Simmons A J, et al, 2011.The ERA‐Interim reanalysis: configuration and performance of the data assimilation system[J].Quarterly Journal of the Royal Meteorological Society137(656): 553-597.DOI: 10.1002/qj.828 .
null
Foret G Eremenko M Cuesta J, et al, 2014.Ozone pollution: what can we see from space? a case study[J].Journal of Geophysical Research: Atmospheres119(13): 8476-8499.DOI: 10.1002/2013JD021340 .
null
Gaudel A Cooper O R Ancellet G, et al, 2018.Tropospheric ozone assessment report: present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation[J].Elementa: Science of the Anthropocene, 6.DOI: 10.1525/elementa.291 .
null
Gaudel A Cooper O R Chang K L, et al, 2020.Aircraft observations since the 1990s reveal increases of tropospheric ozone at multiple locations across the Northern Hemisphere[J].Science Advances6(34): eaba8272.DOI: 10.1126/sciadv.aba8272 .
null
Hu L Jacob D J Liu X, et al, 2017.Global budget of tropospheric ozone: Evaluating recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde observations[J].Atmospheric Environment, 167: 323-334.DOI: 10.1016/j.atmosenv. 2017.08.036 .
null
Huang G Y Liu X Chance K, et al, 2017.Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations[J].Atmospheric Measurement Techniques10(7): 2455-2475.DOI: 10.5194/amt-10-2455-2017 .
null
Huijnen V Miyazaki K Flemming J, et al, 2020.An intercomparison of tropospheric ozone reanalysis products from CAMS, CAMS interim, TCR-1, and TCR-2[J].Geoscientific Model Development13(3): 1513-1544.DOI: 10.5194/gmd-13-1513-2020 .
null
Inness A Ades M Agustí-Panareda A, et al, 2019.The CAMS reanalysis of atmospheric composition[J].Atmospheric Chemistry and Physics19(6): 3515-3556.DOI: 10.5194/acp-19-3515-2019 .
null
IPCC, 2023.The earth’s energy budget, climate feedbacks and climate sensitivity[C].Climate Change 2021: The Physical Science Basis.Cambridge University Press.DOI: 10.1017/9781009157896.009 .
null
Kanaya Y Miyazaki K Taketani F, et al, 2019.Ozone and carbon monoxide observations over open oceans on R/V Mirai from 67°S to 75°N during 2012 to 2017: Testing global chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport[J].Atmospheric Chemistry and Physics19(11).DOI: 10.5194/acp-19-7233-2019 .
null
Levelt P F van den Oord G H J Dobber M R, et al, 2006.The ozone monitoring instrument[J].IEEE Transactions on Geoscience and Remote Sensing44(5): 1093-1101.DOI: 10.1109/tgrs.2006. 872333 .
null
Leventidou E Weber M Eichmann K-U, et al, 2018.Harmonisation and trends of 20-year tropical tropospheric ozone data[J].Atmospheric Chemistry and Physics18(13): 9189-9205.DOI: 10. 5194/acp-18-9189-2018 .
null
Lin M Y Horowitz L W Oltmans S J, et al, 2014.Tropospheric ozone trends at Mauna Loa Observatory tied to decadal climate variability[J].Nature Geoscience7(2): 136-143.DOI: 10. 1038/ngeo2066 .
null
Lin Y F Tian W S Xue H Y, et al, 2023.Global trends of tropopause folds in recent decades[J].Atmospheric and Oceanic Science Letters17(3): 100450.DOI: 10.1016/j.aosl.2023.100450 .
null
Logan J A1985.Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence[J].Journal of Geophysical Research90(D6): 10463-10482.DOI: 10.1029/jd090id06p10463 .
null
Lu X Zhang L Shen L2019.Meteorology and climate influences on tropospheric ozone: a review of natural sources, chemistry, and transport patterns[J].Current Pollution Reports5(4): 238-260.DOI: 10.1007/s40726-019-00118-3 .
null
Miyazaki K Bowman K2017.Evaluation of ACCMIP ozone simulations and ozonesonde sampling biases using a satellite-based multi-constituent chemical reanalysis[J].Atmospheric Chemistry and Physics17(13): 8285-8312.DOI: 10.5194/acp-17-8285-2017 .
null
Miyazaki K Bowman K Sekiya T, et al, 2020.Updated tropospheric chemistry reanalysis and emission estimates, TCR-2, for 2005-2018[J].Earth System Science Data12(3): 2223-2259.DOI: 10.5194/essd-12-2223-2020 .
null
Munro R Lang R Klaes D, et al, 2016.The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing-an overview[J].Atmospheric Measurement Techniques9(3): 1279-1301.DOI: 10.5194/amt-9-1279-2016 .
null
Neu J L Flury T Manney G L, et al, 2014.Tropospheric ozone variations governed by changes in stratospheric circulation[J].Nature Geoscience7(5): 340-344.DOI: 10.1038/ngeo2138 .
null
Sekiya T Miyazaki K Ogochi K, et al, 2018.Global high-resolution simulations of tropospheric nitrogen dioxide using CHASER V4.0[J].Geoscientific Model Development11(3): 959-988.DOI: 10.5194/gmd-11-959-2018 .
null
Sterling C W Johnson B J Oltmans S J, et al, 2018.Homogenizing and estimating the uncertainty in NOAA's long-term vertical ozone profile records measured with the electrochemical concentration cell ozonesonde[J].Atmospheric Measurement Techniques11(6): 3661-3687.DOI: 10.5194/amt-11-3661-2018 .
null
Tarasick D W Smit H G J Thompson A M, et al, 2021.Improving ECC Ozonesonde data quality: assessment of current methods and outstanding issues[J].Earth and Space Science8(3).DOI: 10.1029/2019ea000914 .
null
Tilmes S Lamarque J F Emmons L K, et al, 2012.Technical Note: Ozonesonde climatology between 1995 and 2011: description, evaluation and applications[J].Atmospheric Chemistry and Physics12(16): 7475-7497.DOI: 10.5194/acp-12-7475-2012 .
null
Van Malderen R Allaart M A De Backer H, et al, 2016.On instrumental errors and related correction strategies of ozonesondes: possible effect on calculated ozone trends for the nearby sites Uccle and De Bilt[J].Atmospheric Measurement Techniques9(8): 3793-3816.DOI: 10.5194/amt-9-3793-2016 .
null
Verstraeten W W Neu J L Williams J E, et al, 2015.Rapid increases in tropospheric ozone production and export from China[J].Nature Geoscience8(9): 690-695.DOI: 10.1038/ngeo2493 .
null
Watanabe S Hajima T Sudo K, et al, 2011.MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments[J].Geoscientific Model Development4(4): 845-872.DOI: 10.5194/gmd-4-845-2011 .
null
Williams R S Hegglin M I Kerridge B J, et al, 2019.Characterising the seasonal and geographical variability in tropospheric ozone, stratospheric influence and recent changes[J].Atmospheric Chemistry and Physics19(6): 3589-3620.DOI: 10.5194/acp-19-3589-2019 .
null
Witte J C Thompson A M Smit H G J, et al, 2018.First reprocessing of Southern Hemisphere ADditional OZonesondes (SHADOZ) profile records: 3.Uncertainty in ozone profile and total column[J].Journal of Geophysical Research: Atmospheres123(6): 3243-3268.DOI: 10.1002/2017jd027791 .
null
Yeung L Y Murray L T Martinerie P, et al, 2019.Isotopic constraint on the twentieth-century increase in tropospheric ozone[J].Nature570(7760): 224-227.DOI: 10.1038/s41586-019-1277-1 .
null
Young P J Naik V Fiore A M, et al, 2018.Tropospheric ozone assessment report: assessment of global-scale model performance for global and regional ozone distributions, variability, and trends[J].Elementa: Science of the Anthropocene6(1): 10.DOI: 10.1525/elementa.265 .
null
Zhang J Xuan Y Yan X, et al, 2014.Development and preliminary evaluation of a double-cell ozonesonde[J].Advances in Atmospheric Sciences31(4).DOI: 10.1007/s00376-013-3104-1 .
null
Zhang Y Tao M Zhang J, et al, 2020.Long-term variations in ozone levels in the troposphere and lower stratosphere over Beijing: observations and model simulations[J].Atmospheric Chemistry and Physics20(21): 13343-13354.DOI: 10.5194/acp-20-13343-2020 .
null
Zhang Y West J J Emmons L K, et al, 2021.Contributions of world regions to the global tropospheric ozone burden change from 1980 to 2010[J].Geophysical Research Letters48(1).DOI: 10.1029/2020gl089184 .
null
陈闯, 田文寿, 田红瑛, 等, 2012.青藏高原东北侧臭氧垂直分布与平流层-对流层物质交换[J].高原气象31(2): 295-303.
null
Chen C Tian W S Tian H Y, et al, 2012.Vertical distribution of ozone and stratosphere-troposphere exchanges on the northeastern side of Tibetan Plateau[J].Plateau Meteorology31(2): 295-303.
null
黎武标, 王永达, 姜文英, 2024.对流层臭氧污染对植物生理影响的研究进展[J].地球与行星物理论评(中英文)55(2): 195-204.DOI: 10.19975/j.dqyxx.2023-021.Li W B
null
Wang Y D Jiang W Y2024.Impacts of tropospheric ozone pollution on plant physiology: Current status and future perspectives[J].Reviews of Geophysics and Planetary Physics55(2): 195-204.DOI: 10.19975/j.dqyxx.2023-021 .
null
李洋, 张健恺, 田文寿, 等, 2018.动力传输和地表排放对北京地区对流层臭氧长期变化的影响[J].干旱气象36(2): 157-166.DOI: 10.11755/j.issn.1006-7639(2018)-02-0157.Li Y
null
Zhang J K Tian W S, et al, 2018.Impact of dynamic transmission and surface emission on ozone change in troposphere over Beijing[J].Journal of Arid Meteorology36(2): 157-166.DOI: 10.11755/j.issn.1006-7639(2018)-02-0157 .
null
郄秀书, 吕达仁, 陈洪滨, 等, 2008.大气探测高技术及应用研究进展[J].大气科学, (4): 867-881.DOI: 10.3878/j.issn.1006-9895.2008.04.14.Qie X S
null
D R Chen H B, et al, 2008.Advances in high technology of atmospheric sounding and application researches[J].Chinese Journal of Atmospheric Sciences, (4): 867-881.DOI: 10.3878/j.issn.1006-9895.2008.04.14 .
null
张芳, 吴统文, 张洁, 等, 2016.BCC-AGCM-Chem0模式对20世纪对流层臭氧变化趋势的模拟研究[J].高原气象35(1): 158-171.DOI: 10.7522/j.issn.1000-0534.2014.00118.Zhang F
null
Wu T W Zhang J, et al, 2016.Variations of tropospheric ozone in the 20th century simulated by BCC-AGCM-Chem0 model[J].Plateau Meteorology35(1): 158-171.DOI: 10.7522/j.issn. 1000-0534.2014.00118 .
null
张金强, 王振会, 陈洪滨, 等, 2017.地基与星载仪器观测大气臭氧总量分析[J].气候与环境研究22(2): 177-190.DOI: 10.3878/j.issn.1006-9585.2016.15263.Zhang J Q
null
Wang Z H Chen H B, et al, 2017.Total ozone column derived from the ground-based and space-borne instruments[J].Climatic and Environmental Research22(2): 177-190.DOI: 10.3878/j.issn.1006-9585.2016.15263 .
null
赵恺辉, 包云轩, 黄建平, 等, 2019.华南地区春季平流层入侵对对流层低层臭氧影响的模拟研究[J].大气科学43(1): 75-86.DOI: 10.3878/j.issn.1006-9895.1801.17224.Zhao K H
null
Bao Y X Huang J P, et al, 2019.A modeling study of the impact of stratospheric intrusion on ozone enhancement in the lower troposphere in south China[J].Chinese Journal of Atmospheric Sciences43(1): 75-86.DOI: 10.3878/j.issn.1006-9895.1801.17224 .
null
郑向东, 宣越键, 林伟立, 等, 2018.国产ECC型O3探空仪性能测试及室外比对观测[J].应用气象学报29(4): 460-473.DOI: 10.11898/1001-7313.20180407.Zheng X D
null
Xuan Y J Lin W L, et al, 2018.Performance tests and outdoor comparison observations of domestic remade ECC ozonesondes[J].Journal of Applied Meteorological Science29(4): 460-473.DOI: 10.11898/1001-7313.20180407 .
文章导航

/