收稿日期: 2023-09-25
修回日期: 2024-03-27
网络出版日期: 2024-03-27
基金资助
国家自然科学基金项目(41975130); 成都信息工程大学教师科技创新能力提升计划项目(KYQN202239); 中国科学院、 水利部成都山地灾害与环境研究所科研项目(IMHE-ZDRW-06)
Influence of WRF-Lake Model on Summer Atmospheric Boundary Layer Simulation in Nam Co Lake Area under Different Subgrid Parameterization Schemes
Received date: 2023-09-25
Revised date: 2024-03-27
Online published: 2024-03-27
采用改进湖泊动力参数模块的WRF-Lake模式(WRF4.4.1), 选取6种微物理方案、 5种积云对流方案、 2种边界层方案, 共60种参数化方案组合对纳木错湖区2008年7月5 -13日天气进行模拟, 通过敏感性试验对比分析不同参数化方案组合对大气边界层内变量的模拟效果, 利用“排名方法”对不同参数化方案在纳木错湖区夏季大气边界层的模拟能力进行综合评估。结果表明, 模式能较好捕捉纳木错夏季平均2 m温度的总体时空分布特征, 但湖上2 m温度模拟值偏高; 受积云对流参数化方案和模式性能影响, 各试验组对降水的模拟效果差异化显著并对日降水量存在不同程度的高估; 模式对纳木错测站潜热通量日平均变化模拟性能最好, 感热和风向较好, 风速最差。整体而言, 综合分析各试验组对纳木错湖夏季大气边界层的模拟能力发现, 方案58(SBU-Tiedtke-MYNN3)对纳木错湖夏季2 m温度、 日降水量、 10 m风场及地表热通量的模拟效果最好。2 m温度RMSE值为2.38 ℃, 日降水量RMSE值为10.48 mm, 10 m风速日平均变化的相关系数为-0.41, 标准差之比为0.94, 10 m风向日平均变化的相关系数为0.59, 标准差之比为0.73, 感热通量日平均变化的相关系数为0.94, 标准差之比为1.89, 潜热通量日平均变化的相关系数为0.89, 标准差之比为0.91。因此, 建议使用以上次网格参数化方案进行纳木错湖区夏季大气边界层模拟。
王梓奕 , 杨显玉 , 吕雅琼 , 孟宪红 , 王黎欢 . WRF-Lake模式不同参数化方案对纳木错湖区夏季大气边界层模拟的影响[J]. 高原气象, 2024 , 43(6) : 1416 -1432 . DOI: 10.7522/j.issn.1000-0534.2024.00045
In this study, the improvements of lake dynamic module parameters in the literature were added to WRF-Lake (WRF4.4.1) at first, then six microphysical schemes, five cumulus convection schemes and two boundary layer schemes were selected.A total of 60 WRF-Lake simulations with different parameterization schemes were carried out from July 5 to 13, 2008 in the Nam Co Lake area.Sensitivity experiments were conducted to comparatively analyze the effects of different parameterization scheme combinations on atmospheric boundary layer variables.The "ranking method" was employed to comprehensively evaluate the simulation capabilities of different parameterization schemes in the summer atmospheric boundary layer over Nam Co Lake.The results indicated that the model captures the overall spatial and temporal distribution characteristics of the summer average two-meter temperature in Nam Co.However, the simulated values of the two-meter temperature over the lake were higher than the land surface data.Due to the selection of cumulus convection parameterization schemes and the impact of model performance, there was significant differentiation in the simulation effects of precipitation among experimental groups, leading to varying degrees of overestimation of daily precipitation.The daily average variations of latent heat fluxes showed the best correlation with observational values, while sensible heat and wind direction exhibited relatively good performance, and wind speed showed the least satisfactory results.Overall, comprehensive analysis of the simulation capabilities of each experimental group for the summer atmospheric boundary layer over Nam Co Lake revealed that Scheme 58 (SBU-Tiedtke-MYNN3) performed the best in simulations of 2 m temperature, daily precipitation, 10 m wind fields, and surface heat fluxes.The RMSE value for two-meter temperature and daily precipitation was 2.33 °C and 10.48 mm, respectively.The correlation coefficient for the daily average variation of 10 m wind speed was -0.41, and the ratio of standard deviations was 0.94.The correlation coefficient for the daily average variation of 10 m wind direction was 0.59, and the ratio of standard deviations was 0.73.The correlation coefficient for the daily average variation of sensible heat flux was 0.94, and the ratio of standard deviations was 1.89.The correlation coefficient for the daily average variation of latent heat flux was 0.89, and the ratio of standard deviations was 0.91.Therefore, it is recommended to use the aforementioned grid parameterization scheme for simulating the summer atmospheric boundary layer over the region of Lake Nam Co.
Key words: Nam Co Lake; WRF-Lake; parameterization scheme; boundary layer
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 鲍艳, 王玉琦, 南素兰, 等, 2023.青藏高原植被对未来气候变暖的反馈[J].高原气象, 42(3): 553-563.DOI: 10.7522/j.issn.1000-0534.2021.00109.Bao Y , |
null | |
null | 常亚茹, 张继贤, 韩文立, 等, 2022.利用Sentinel-1A数据的纳木错湖面月际变化监测[J].遥感信息, 37(2): 45-52.DOI: 10.3969/j.issn.1000-3177.2022.02.006.Chang Y R , |
null | |
null | 陈锋, 康世昌, 张拥军, 等, 2009.纳木错流域冰川和湖泊变化对气候变化的响应[J].山地学报, 27(6): 641-647.DOI: 10.3969/j.issn.1008-2786.2009.06.001.Chen F , |
null | |
null | 德吉央宗, 强巴欧珠, 白玛央宗, 等, 2019.西藏纳木错湖泊面积变化对气候变化的响应[J].河南科技, 672(10): 133-136.DOI: 10.3969/j.issn.1003-5168.2019.10.050.Deji Y C , |
null | |
null | 杜娟, 文莉娟, 苏东生, 2020.青藏高原不同深度湖泊无冰期湖气温差及湖表辐射与能量平衡特征模拟分析[J].高原气象, 39(6): 1181-1194.DOI: 10.7522/j.issn.1000-0534.2019.00133.Du J , |
null | |
null | 方楠, 阳坤, 拉珠, 2017.WRF湖泊模型对青藏高原纳木错湖的适用性研究[J].高原气象, 36(3): 610-618.DOI: 10.7522/j.issn.1000-0534.2016.00038.Fang N , |
null | |
null | 何友翔, 刘娟, 2021.2000—2020年纳木错的时空变化特征及其对气候变化的响应[J].甘肃地质, 30(3): 57-64. |
null | |
null | 李蒙, 严登华, 刘少华, 等, 2017.近40 年来纳木错水面面积及蓄水量变化特征[J].水电能源科学, 35(2): 41-43+52.DOI: CNKI: SUN: SDNY.0.2017-02-010.Li M , |
null | |
null | 李治国, 2014. 近 50年气候变化背景下青藏高原冰川和湖泊变化(英文)[J].Journal of Resources and Ecology, 5(2): 123-131.DOI: 10.5814/j.issn.1674-764x.2014.02.004.Li Z G , 2014.Glacier and lake changes across the Tibetan Plateau during the Past 50 years of climate change[J].Journal of Resources and Ecology, 5(2): 123-131.DOI: 10.5814/j.issn.1674-764x. 2014.02.004 . |
null | 林思诺, 张茵驰, 孙劭, 等, 2023.WRF参数化方案与初始场对闽江流域暴雨模拟的敏感性研究[J].人民珠江, 44(10): 35-46+61.DOI: 10.3969/j.issn.1001-9235.2023.10.004.Lin S N , |
null | |
null | 刘梦娟, 张旭, 陈葆德, 2018.边界层参数化方案在"灰色区域"尺度下的适用性评估[J].大气科学, 42(1): 18.DOI: 10.3878/j.issn.1006-9895.1704.16269.Liu M J , |
null | |
null | 闾利, 张廷斌, 易桂花, 等, 2019.2000年以来青藏高原湖泊面积变化与气候要素的响应关系研究[J].湖泊科学, 31(2): 573-589. |
null | |
null | 吕雅琼, 马耀明, 李茂善, 等, 2008.青藏高原纳木错湖区大气边界层结构分析[J].高原气象, 27(6): 1205-1210. |
null | |
null | 马耀明, 2020.青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005-2016)[Z].时空三极环境大数据平台.DOI: 10.11888/Meteoro.tpdc.270910.Ma Y, 2020. |
null | A long-term dataset of integrated land-atmosphere interaction observations on the Tibetan Plateau (2005-2016)[Z].A Big Earth Data Platform for Three Poles, DOI: 10.11888/Meteoro.tpdc.270910 . |
null | 牛瑞佳, 文莉娟, 王梦晓, 等, 2023.积雪和沙尘对冰封期青海湖辐射和温度的影响[J].高原气象, 42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021.Niu R J , |
null | |
null | 宋春桥, 叶庆华, 程晓, 2015.基于ICESat/CryoSat-2卫星测高及站点观测的纳木错湖水位趋势变化监测[J].科学通报, 60(21): 2048. |
null | |
null | 宋兴宇, 文莉娟, 李茂善, 等, 2020.不同湖泊模式对青藏高原典型湖泊适用性对比研究[J].高原气象, 39(2): 13.DOI: 10.7522/j.issn.1000-0534.2019.00102.Song X Y , |
null | |
null | 苏东生, 文莉娟, 赵林, 等, 2019.青海湖夏秋季局地气候效应数值模拟研究[J].高原气象, 38(5): 944-958.DOI: 10.7522/j.issn.1000-0534.2018.00125.Su D S , |
null | |
null | 汪远伟, 邬光剑, 2018.纳木错多圈层综合观测研究站气象观测数据(2005-2016)[Z].时空三极环境大数据平台.DOI: DOI: 10.11888/AtmosPhys.tpe.00000049.file.Wang Y W, Wu G J, 2018.Meteorological observation data from the integrated observation and research station of multiple spheres in Namco (2005-2016)[Z].A Big Earth Data Platform for Three Poles, DOI: 10.11888/AtmosPhys.tpe.00000049.file. |
null | 王晓君, 马浩, 2011.新一代中尺度预报模式(WRF)国内应用进展[J].地球科学进展, 26(11): 1191-1199.DOI: 10.11867/j.issn.1001-8166.2011.11.1191.Wang X J , |
null | |
null | 吴冰雪, 苗峻峰, 杨薇, 2023.边界层参数化对海南岛山地环流结构和湍流特征模拟的影响[J].地球物理学报, 66(5): 1888-1910. |
null | |
null | 吴艳红, 郭立男, 范兰馨, 等, 2022.青藏高原纳木错湖冰物候变化遥感监测与模拟[J].遥感学报, 26(1): 193-200.DOI: 10.11834/jrs.20221288.Wu Y H , |
null | |
null | 许洁, 马耀明, 孙方林, 等, 2018.湖泊和上风向地形对纳木错地区秋季降水影响[J].高原气象, 37(6): 1535-1543.DOI: 10.7522/j.issn.1000-0534.2018.00054.Xu J , |
null | |
null | 阳坤, 何杰, 2016.中国区域高时空分辨率地面气象要素驱动数据集(1979-2015)[Z].时空三极环境大数据平台.DOI: 10.3972/westdc.002.2014.db.Yang K, He J, 2016.China meteorological forcing dataset (1979-2015)[Z].A Big Earth Data Platform for Three Poles.DOI: 10.3972/westdc.002.2014.db. |
null | 杨显玉, 吕雅琼, 文军, 等, 2022.扎陵湖和鄂陵湖夏季典型地表水热交换特征的数值模拟[J].高原气象, 41(1): 143-152.DOI: 10.7522/j.issn.1000-0534.2020.00090.Yang X Y , |
null | |
null | 杨扬, 卢冰, 王薇, 等, 2021.基于WRF的积云对流参数化方案对中国夏季降水预报的影响研究[J].气象学报, 79(4): 612-625.DOI: 10.11676/qxxb2021.045.Yang Y , |
null | |
null | 朱立平, 谢曼平, 吴艳红, 2010.西藏纳木错1971~2004年湖泊面积变化及其原因的定量分析[J].科学通报, 55(18): 1789-1798.DOI: 10.1007/s11434-010-0015-8.Zhu L P , |
null |
/
〈 |
|
〉 |