null | Ali A A, Fisher J B, Rogers A, et al, 2016.A global scale mechanistic model of photosynthetic capacity (LUNA V1.0)[J]. Geoscientific Model Development, 9(2): 587-606.DOI: 10.5194/gmd-9-587-2016 . |
null | Beer C, Reichstein M, Tomelleri E, et al, 2010.Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate[J]. American Association for the Advancement of Science, 329(5993): 834-8.DOI: 10.1126/SCIENCE.1184984 . |
null | Bi W J, He W, Zhou Y Z, et al, 2022.A global 0.05° dataset for gross primary production of sunlit and shaded vegetation canopies from 1992 to 2020[J]. Scientific Data, 9(1): 2052-4463.DOI: 10.1038/s41597-022-01309-2 . |
null | Cai L B, Chen X, Huang R C, et al, 2022.Runoff change induced by vegetation recovery and climate change over carbonate and non-carbonate areas in the karst region of South-west China[J]. Journal of Hydrology, 604(127231): 0022-1694.DOI: 10.1016/j.jhydrol.2021.127231 . |
null | Cao M, Woodward, et al, 1998.Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J]. Nature, 393(6682): 249-249.DOI: 10.1038/30460 . |
null | Deng M S, Meng X H, Lu Y Q, et al, 2022.The response of vegetation to regional climate change on the Tibetan Plateau based on remote sensing products and the dynamic global vegetation model[J]. Remote Sensing, 14(27): 7540-7552.DOI: 10.1029/2019JD030481 . |
null | Dickinson R E, Henderson-Sellers A, Kennedy P J, et al, 1986.Biosphere-atmosphere transfer scheme (BATS) for the NCAR Community Climate Model[J]. University Corporation for Atmospheric Research, 213(26): 2052-4463.DOI: 10.5065/D6668B58 . |
null | Duan Q, Schaake J, V.Andréassian, et al, 2006.Model Parameter Estimation Experiment (MOPEX): an overview of science strategy and major results from the second and third workshops[J]. Journal of Hydrology, 320(1-2): 3-17.DOI: 10.1016/j.jhydrol.2005.07.031 . |
null | Foley J A, Levis S, Costa M H, et al, 2000.Incorporating dynamic vegetation cover within global climate models[J]. Ecological Applications, 10(6): 1620-1632.DOI: 10.2307/2641227 . |
null | Foley J A, Prentice I C, Ramankutty N, et al, 1996.An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics[J]. Global Biogeochemical Cycles, 10(4): 603-628.DOI: 10.1029/96GB02692 . |
null | Hantson S, Arneth A, Harrison S P, et al, 2016.The status and challenge of global fire modelling[J]. Biogeosciences Discussions, 13(11): 3359-3375.DOI: 10.5194/bg-13-3359-2016 . |
null | Hu Q W, Li T T, Deng X, et al, 2022.Intercomparison of global terrestrial carbon fluxes estimated by MODIS and Earth system models[J]. Science of the Total Environment, 810(18): 152231.DOI: 10.1016/j.scitotenv.2021.152231 . |
null | Jiang C Y, Ryu Y, Fang H L, et al, 2017.Inconsistencies of interannual variability and trends in long-term satellite leaf area index products[J]. Global Change Biology, 23(10): 4133-4146.DOI: 10.1111/gcb.13787 . |
null | Ke Y, Leung L R, Huang M, et al, 2012.Development of high resolution land surface parameters for the Community Land Model[J]. Geoscientific Model Development, 5(6): 1341-1362.DOI: 10.5194/gmd-5-1341-2012 . |
null | Lawrence D M, Fisher R A, Koven C D, et al, 2010.The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12).DOI: 10.1029/2018MS001583 . |
null | Lawrence P J, ChaseT N, 2010.Investigating the climate impacts of global land cover change in the community climate system model[J]. International Journal of Climatology, 30(13): 2066-2087.DOI: 10.1002/joc.2061 . |
null | Lawrence P J, Lawrence D M, Hurtt G C, 2018.Attributing the carbon cycle impacts of CMIP5 historical and future land use and land cover change in the community earth system model (CESM1)[J]. Journal of Geophysical Research: Biogeosciences, 123(5): 1732-1755 DOI: 10.1029/2017JG004348 . |
null | Lawrence P J, Chase T N, 2010.Investigating the climate impacts of global land cover change in the community climate system model[J]. International Journal of Climatology, 30(13): 2066-2087.DOI: 10.1002/joc.2061 |
null | Levis S, 2010.Modeling vegetation and land use in models of the earth system[J]. Wiley Interdisciplinary Reviews Climate Change, 1(6): 840-856.DOI: 10.1002/wcc.83 . |
null | Levis S, Bonan G B, Bonfils C, 2004.Soil feedback drives the mid-Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model[J]. Climate Dynamics, 23(7/8): 791-802.DOI: 10.1007/s00382-004-0477-y . |
null | Li Z X, He Y Q, Wang P Y, et al, 2012.Changes of daily climate extremes in southwestern China during 1961-2008[J]. Global & Planetary Change, 80- 81(0921-8181): 255-272.DOI: 10. 1016/j.gloplacha.2011.06.008 . |
null | Liang M L, Xie Z H, 2008.Improving the vegetation dynamic simulation in a land surface model by using a statistical-dynamic canopy interception scheme[J]. Advances in Atmospheric Sciences, 25(4): 610–618.DOI: 10.1007/s00376-008-0610-7 . |
null | Like N, Jun X, Chesheng Z, et al, 2016.Runoff of arid and semi-arid regions simulated and projected by CLM-DTVGM and its multi-scale fluctuations as revealed by EEMD analysis[J]. Journal of Arid Land, 8(4): 506-520.DOI: 10.1007/s40333-016-0126-4 . |
null | Liu Y, Liu R, Chen J M, 2012.Retrospective retrieval of long-term consistent global leaf area index (1981-2011) from combined AVHRR and MODIS data[J]. Journal of Geophysical Research: Biogeosciences, 117(G4): 2169-8953.DOI: 10.1029/2012jg002084 . |
null | Lu X, Du Z, Huang Y, et al, 2020.Full implementation of matrix approach to biogeochemistry module of Community Land Model version 5 (CLM5)[J]. Journal of Advances in Modeling Earth Systems, 12(11).DOI: 10.1029/2020MS002105 . |
null | Madani N, Parazoo N C, 2020.Global monthly GPP from an improved light use efficiency model, 1982-2016[M].ORNL Distributed Active Archive Center. |
null | Ninomiya H, Kato T, Vegh L, et al, 2023.Modeling of non-structural carbohydrate dynamics by the spatially explicit individual-based dynamic global vegetation model SEIB-DGVM (SEIB-DGVM-NSC version 1.0)[J]. Geoscientific Model Development, 16(14): 4155-4170.DOI: 10.5194/gmd-16-4155-2023 . |
null | Piao S L, Fang J Y, et al, 2009.The carbon balance of terrestrial ecosystems in China[J]. Nature, 458(7241): 1009-13.DOI: 10. 1038/nature07944 . |
null | Sato, H, Itoh, A, Kohyama, T, 2007.SEIB-DGVM: A new dynamic global vegetation model using a spatially explicit individual-based approach[J]. Ecological Modelling, 200(3-4): 279-307.DOI: 10.1016/j.ecolmodel.2006.09.006 . |
null | Sellers P J, 1997.Modeling the exchanges of energy, water, and carbon between continents and the atmosphere[J]. Science, 275(5299): 502-509.DOI: doi: 10.1126/science.275.5299.502 . |
null | Shao P, Zeng X D, 2011.The impact of interannual climate variability on the mean global vegetation distribution[J]. Acta Ecologica Sinica, 31(6): 1494-1505.DOI: 10.3724/SP.J.1077.2011.00311 . |
null | Song X, Wang D Y, Li F, et al, 2021.Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution[J]. Advances in Climate Change Research, 12(4): 584-595.DOI: 10.1016/j.accre.2021.06.008 . |
null | Sun G D, 2009.Simulation of potential vegetation distribution and estimation of carbon flux in China from 1981 to 1998 with LPJ dynamic global vegetation model[J]. Climatic and Environmental Research, 14(4): 341-351.DOI: 10.1016/S1003-6326(09)60084-4 . |
null | |
null | Thonicke K, Venevsky S, Sitch S, et al, 2001.The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model[J]. Global Ecology and Biogeography, 10(6): 661-677.DOI: 10.1046/j.1466-822X.2001.00175.x . |
null | Viovy N, 2018.CRUNCEP version 7-atmospheric forcing data for the community land model[M].Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory; Boulder, CO. |
null | Wang H, Yao F, Zhu H S, et al, 2020.Spatiotemporal variation of vegetation coverage and its response to climate factors and human activities in arid and semi-arid areas: case study of the Otindag Sandy Land in China[J]. Sustainability, 12(12): 5214.DOI: 10.3390/su12125214 . |
null | Xie X Y, Li A N, Jin H A, et al, 2019.Assessment of five satellite-derived LAI datasets for GPP estimations through ecosystem models[J]. Science of The Total Environment, 690(10): 1120-1130.DOI: 10.1016/j.scitotenv.2019.06.516 . |
null | Xiong Q, Sun Z Y, Cui W, et al, 2022.A study on sensitivities of tropical forest GPP responding to the characteristics of drought- case study in Xishuangbanna, China[J]. Water, 14(2): 157.DOI: 10.3390/w14020157 . |
null | Xu K, Wang X P, Jiang C, et al, 2020.Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity[J]. Forest Ecosystems, 7(3): 12.DOI: 10.1186/s40663-020-00239-y . |
null | Xue B L, Guo Q H, Hu T Y, et al, 2017.Evaluation of modeled global vegetation carbon dynamics: analysis based on global carbon flux and above-ground biomass data[J]. Ecological Modelling, 355(38): 84-96.DOI: 10.1016/j.ecolmodel.2017.04.012 . |
null | Yu M, Li Q, Hayes M J, et al, 2014.Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951-2010?[J]. International Journal of Climatology, 34(3): 545-558.DOI: 10.1002/joc.3701 . |
null | Yuan Q Z, Wu S H, Zhao D S, et al, 2014.Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005[J]. Journal of Geographical Sciences, 24(1): 3-17.DOI: 10. 1007/s11442-014-1069-3 . |
null | Zhu Z C, Bi J, Pan Y Z, et al, 2013.Global data sets of vegetation Leaf Area Index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the Period 1981 to 2011[J]. Remote Sensing, 5(2): 927-948.DOI: 10.3390/rs5020927 . |
null | |
null | Wang Y Q, Nan S L, et al, 2023.Evaluation of vegetation characteristics over Qinghai- Xizang Plateau simulated by a vegetation dynamic model[J]. Plateau Meteorology, 42(2): 333-343.DOI: 10.7522/j.issn.1000-0534.2021.00062 . |
null | |
null | Chen B Z, Wang Y, et al, 2014.Review of dynamic global vegetation models (DGVMs)[J]. Chinese Journal of Applied Ecology, 25(1): 263-271.DOI: 10.13287/j.1001-9332.2014.01.036 . |
null | |
null | Xue Z H, 2009.A land cover dataset based on chinese vegetation data and its impact on land surface simulations[J]. Chinese Journal of Atmospheric Sciences, 33(4): 681-697.DOI: 10.3878/j.issn.1006-9895.2009.04.03 . |
null | |
null | Hu Z Y, Lu S, et al, 2022.A simulation study on soil parameterization scheme of seasonally frozen ground regions based on CLM4.5[J]. Plateau Meteorology, 41(1): 93-106.DOI: 10.7522/j.issn.1000-0534.2021.00050 . |
null | |
null | Huang Y, Sun T, 2021.Spatiotemporal evolution of vegetation net primary productivity in the karst region of southwest China from 2001 to 2018[J]. Acta Ecologica Sinica, 2021, 41(24): 9836-9846.DOI: 10.5846/stxb202009122381 . |
null | |
null | Zhou Y L, Liu Y, 2020.Spatial and temporal differences of GPP simulated by different satellite-derived LAI in China[J]. Remote Sensing Technology and Application, 35(5): 1015-1027.DOI: 10.11873/j.issn.1004-0323.2020.5.1015 . |
null | |
null | Yin L C, Zhang Y, et al, 2021.Spatio-temporal dynamics of fractional vegetation coverage based on MODIS-EVI and its driving factors in Southwest China[J].41(3): 1138-1147.DOI: 10.5846/stxb201907101451 . |
null | |
null | Zhang L, Jing Y S, et al, 2019.Evaluation and error analysis of gross primary productivity using land surface model CLM over FLUXNET[J]. Chinese Journal of Ecology, 38(9): 2883-2895.DOI: 10.13292/j.1000-4890.201909.020 . |
null | 刘佳凤, 2023.青藏高原东缘森林通用陆面模式植被生长参数优化[D].成都: 成都山地灾害与环境研究所, 1-115. |
null | Liu J F, 2023.Optimization of vegetation growth parameters in the Community Land Model for the forest on the eastern edge of the Tibetan Plateau[D].Chengdu: Institute of Mountain Hazards and Environment, 1-115. |
null | |
null | Zhou M C, 2017.Uncertain sources of remote sensing inversion of vegetation leaf area index: an overview[J]. Jiangsu Agricultural Sciences, 45(12): 12-19.DOI: 10.15889/j.issn.1002-1302.2017.12.003 . |
null | |
null | Wang L, Li Q L, et al, 2014.Study of surface dry and wet conditions in southwest China in recent 50 years[J]. Journal of Natural Resoueces, 29(1): 104-116.DOI: 10.11849/zrzyxb.2014.01.010 . |
null | 田晓瑞, 赵凤君, 舒立福, 等, 2010.西南林区卫星监测热点及森林火险天气指数分析[J].林业科学研究, 23(4): 523-529. |
null | Tian X R, Zhao F J, Shu L F, et al, 2010.Hotspots from satellite monitoring and forest fire weather index analysis for southwest China[J].Forest Research, 23(4): 523-529. |
null | |
null | |
null | |
null | Xie Z H, Jia B H, et al, 2015.Simulation and evaluation of gross primary productivity in China by using land surface model CLM4[J]. Climatic and Environmental Research, 20(1): 97-110.DOI: 10.3878/j.issn.1006-9585.2014.13208 . |
null | |
null | Yan X D, Xia Y, et al, 2021.Study on precipitation distribution and persistent drought in southwest China in recent 56 years[J]. Mid-low Latitude Mountain Meteorology, 45(2): 15-22.DOI: 10.3969/j.issn.1003-6598.2021.02.003 . |
null | |
null | Xiao T G, Li Y, et al, 2022.Evaluation and projection of climate change in southwest China using CMIP6 model [J]. Plateau Meteorology, 41(6): 15.DOI: 10.7522/j.issn.1000-0534.2021.00119 . |
null | |
null | Wang K L, Yue Y M, et al, 2017.Factors impacting on vegetation dynamics and spatial non-stationary relationships in karst regions of southwest China[J]. Acta Ecologica Sinica, 37(12): 4008-4018.DOI: 10.5846/stxb201611192354 . |
null | 甄英, 李永飞, 何静, 2019.川西北高原甘孜州地区降水变化特征及旱涝研究[J].水土保持研究, 26(6): 191-197. |
null | Zhen Y, Li Y F, He J, 2019.Research on Characteristics of Precipitation change and drought and flood in ganzi region of northwest Sichuan Plateau[J].Research of Soil and Water Conservation, 26(6): 191-197. |
null | |
null | Zeng Y, Zhao Y J, et al, 2017.Monitoring and dynamic analysis of fractional vegetation cover in southwestern China over the past 15 years based on MODIS data[J]. Remote Sensing for Land & Resources, 29(3): 128-136.DOI: 10.6046/gtzyyg.2017.03.19 . |