基于走航观测评估大气再分析中的南大洋大气河

  • 项旭 ,
  • 韩博 ,
  • 张功 ,
  • 刘长炜 ,
  • 梁凯昕 ,
  • 齐木荣 ,
  • 江可悦 ,
  • 林奕辰 ,
  • 钟锐 ,
  • 杨清华
展开
  • 中山大学大气科学学院和南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082

项旭(1999 -), 男, 浙江温州人, 硕士研究生, 主要从事海陆气冰通量的观测研究. E-mail:

收稿日期: 2023-12-28

  修回日期: 2024-03-28

  网络出版日期: 2024-03-28

基金资助

南方海洋科学与工程广东省实验室(珠海)自主项目(SML2021SP201); 国家重点研发计划项目(2020YFA0608804); 广东省基础与应用基础研究基金项目(2020A1515110675); 广东省自然资源厅重点项目(粤自然资合[2022]18号)

Evaluation of Southern Ocean Atmospheric Rivers in Atmospheric Reanalysis data Based on a Navigational Observation

  • Xu XIANG ,
  • Bo HAN ,
  • Gong ZHANG ,
  • Changwei LIU ,
  • Kaixin LIANG ,
  • Murong QI ,
  • Keyue JIANG ,
  • Yinchen LIN ,
  • Rui ZHONG ,
  • Qinghua YANG
Expand
  • School of Atmospheric Sciences,Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),Zhuhai 519082,Guangdong,China

Received date: 2023-12-28

  Revised date: 2024-03-28

  Online published: 2024-03-28

摘要

大气河直接影响南极海-陆-冰-气相互作用, 但对其开展的探空观测尚不多, 造成数值模式和再分析数据的结论存在不确定性。本研究使用了中国第37次南极科考获得的走航探空数据, 针对一次南大洋大气河事件评估了4种大气再分析数据——ERA5, CFSv2, JRA-55和MERRA-2。评估结果表明: 虽然所有大气再分析数据对南大洋水汽通量(IVT)的描述都与观测比较接近——包括在大气河期间, 但这部分是因为再分析数据高估了大气整层(地表至300 hPa)湿度场的同时低估了大气整层风速。进一步分析发现, 大气湿度和风速在垂直方向的协变项被多数再分析数据显著低估甚至给出了与观测相反的结果; 而协变项的偏差对IVT影响与整层大气湿度和风速相当。ERA5在协变项的表现显著优于其他再分析数据。与此同时, ERA5也给出了大气河期间与观测最为一致的逆湿和低空急流结构。因此, 仅就本次观测而言ERA5对南大洋大气河的描述能力是最佳的。

本文引用格式

项旭 , 韩博 , 张功 , 刘长炜 , 梁凯昕 , 齐木荣 , 江可悦 , 林奕辰 , 钟锐 , 杨清华 . 基于走航观测评估大气再分析中的南大洋大气河[J]. 高原气象, 2025 , 44(1) : 83 -94 . DOI: 10.7522/j.issn.1000-0534.2024.00048

Abstract

Atmospheric rivers significantly impact the ocean-land-ice-atmosphere interaction around Antarctica.However, the shortage of in situ observations limits people’s understanding, bringing considerable uncertainty in numerical simulation results and products.This study utilized ship-borne radiosonde data collected during the 37th Chinese Antarctic Expedition to evaluate four kinds of state-of-the-art atmospheric reanalysis datasets (ERA5, CFSv2, JRA-55, and MERRA-2) during an atmospheric river event in the Southern Ocean.All reanalysis provide acceptable descriptions of integrated water vapor transport (IVT) compared with the observation, even during the atmospheric river events.However, all reanalyses overestimated the humidity and underestimated the wind speed across the entire atmospheric column (from surface to 300 hPa).Moreover, all reanalyses, except for ERA5, failed to capture the variation in the covariance term between humidity and wind speed in the vertical direction; the latter contributes to a considerable bias in the IVT of reanalyses.The ERA5 demonstrates superior performance during the observation period, especially in humidity and low-level jet profiles when the atmospheric river arrives at the observation site.In this study, ERA5 seems to be the best atmospheric reanalysis for studying atmospheric rivers in the Southern Ocean.

参考文献

null
Adusumilli S A Fish M Fricker H A, et al, 2021.Atmospheric river precipitation contributed to rapid increases in surface height of the West Antarctic Ice sheet in 2019[J].Geophysical Research Letters48(5): e2020GL091076.DOI: 10.1029/2020GL091076 .
null
Baiman R Winters A C Lenaerts J, et al, 2023.Synoptic drivers of atmospheric river induced precipitation near Dronning Maud Land, Antarctica[J].Journal of Geophysical Research: Atmospheres128(7): e2022JD037859.DOI: 10.1029/2022JD037859 .
null
Bozkurt D Rondanelli R Marín J C, et al, 2018.Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica[J].Journal of Geophysical Research: Atmospheres123(8): 3871-3892.DOI: 10.1002/2017JD027796 .
null
Bracegirdle T J Marshall G J2012.The reliability of antarctic tropospheric pressure and temperature in the latest global reanalyses[J].Journal of Climate25(20): 7138-7146.DOI: 10.1175/jcli-d-11-00685.1 .
null
Bromwich D H Nicolas J P Monaghan A J2011.An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses[J].Journal of Climate24(16): 4189-4209.DOI: 10.1175/2011jcli4074.1 .
null
Cobb A Delle Monache L Cannon F, et al, 2021.Representation of dropsonde-observed atmospheric river conditions in reanalyses[J].Geophysical Research Letters48(15): e2021GL093357.DOI: 10.1029/2021GL093357 .
null
Dee D P Uppala S M Simmons A J, et al, 2011.The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J].Quarterly Journal of the Royal Meteorological Society137(656): 553-597.DOI: 10.1002/qj.828 .
null
Edholm J M Swart S Plessis M D, et al, 2022.Atmospheric rivers contribute to summer surface Buoyancy forcing in the Atlantic Sector of the Southern Ocean[J].Geophysical Research Letters49(17): e2022GL100149.DOI: 10.1029/2022GL100149 .
null
Francis D Mattingly K S Temimi M, et al, 2020.On the crucial role of atmospheric rivers in the two major Weddell Polynya events in 1973 and 2017 in Antarctica[J].Science Advances6(46): eabc2695.DOI: 10.1126/sciadv.abc2695 .
null
Gelaro R Mccarty W Suárez M J, et al, 2017.The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2)[J].Journal of Climate30(14): 5419-5454.DOI: 10.1175/jcli-d-16-0758.1 .
null
Gershunov A Shulgina T Ralph F M, et al, 2017.Assessing the climate-scale variability of atmospheric rivers affecting western North America[J].Geophysical Research Letters44(15): 7900-7908.DOI: 10.1002/2017GL074175 .
null
Gorodetskaya I V Silva T Schmithüsen H, et al, 2020.Atmospheric river signatures in radiosonde profiles and reanalyses at the Dronning Maud Land Coast, East Antarctica[J].Advances in Atmospheric Sciences37(5): 455-476.DOI: 10.1007/s00376-020-9221-8 .
null
Gorodetskaya I V Tsukernik M Claes K, et al, 2014.The role of atmospheric rivers in anomalous snow accumulation in East Antarctica[J].Geophysical Research Letters41(17): 6199-6206.DOI: 10.1002/2014GL060881 .
null
Guan B Waliser D E2015.Detection of atmospheric rivers: evaluation and application of an algorithm for global studies[J].Journal of Geophysical Research: Atmospheres120(24): 12514-12535.DOI: 10.1002/2015JD024257 .
null
Hepworth E Messori G Vichi M2022.Association between extreme atmospheric anomalies over Antarctic sea ice, Southern Ocean Polar Cyclones and atmospheric rivers[J].Journal of Geophysical Research: Atmospheres127(7): e2021JD036121.DOI: 10.1029/2021JD036121 .
null
Hersbach H Bell B Berrisford P, et al, 2020.The ERA5 global reanalysis[J].Quarterly Journal of the Royal Meteorological Society146(730): 1999-2049.DOI: 10.1002/qj.3803 .
null
Inoue J Yamazaki A Ono J, et al, 2015.Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route[J].Scientific Reports5(1): 16868.DOI: 10.1038/srep16868 .
null
Jones P D Lister D H2015.Antarctic near-surface air temperatures compared with ERA-Interim values since 1979[J].International Journal of Climatology35(7): 1354-1366.DOI: 10.1002/joc.4061 .
null
Jones R W Renfrew I A Orr A, et al, 2016.Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica[J].Journal of Geophysical Research: Atmospheres121(11): 6240-6257[2023-10-23].DOI: 10.1002/2015JD024680 .
null
Jung T Gordon N D Bauer P, et al, 2016.Advancing polar prediction capabilities on daily to seasonal time scales[J].Bulletin of the American Meteorological Society97(9): 1631-1647.DOI: 10.1175/bams-d-14-00246.1.xml .
null
Jung T Matsueda M2016.Verification of global numerical weather forecasting systems in polar regions using TIGGE data[J].Quarterly Journal of the Royal Meteorological Society142(695): 574-582.DOI: 10.1002/qj.2437 .
null
Kobayashi S Ota Y Harada Y, et al, 2015.The JRA-55 reanalysis: general specifications and basic characteristics[J].Journal of the Meteorological Society of Japan.Ser.II93(1): 5-48.DOI: 10. 2151/jmsj.2015-001 .
null
Lavers D A Villarini G Allan R P, et al, 2012.The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation[J].Journal of Geophysical Research: Atmospheres, 117(D20).DOI: 10.1029/2012JD018027 .
null
Liang K Wang J Luo H, et al, 2023.The role of atmospheric rivers in Antarctic sea ice variations[J].Geophysical Research Letters50(8): e2022GL102588.DOI: 10.1029/2022GL102588 .
null
Maclennan M L Lenaerts J T M Shields C A, et al, 2023.Climatology and surface impacts of atmospheric rivers on West Antarctica[J].The Cryosphere17(2): 865-881.DOI: 10. 5194/tc-17-865-2023 .
null
Nash D Waliser D Guan B, et al, 2018.The role of atmospheric rivers in extratropical and polar hydroclimate[J].Journal of Geophysical Research: Atmospheres123(13): 6804-6821.DOI: 10.1029/2017JD028130 .
null
Neiman P J Ralph F M Wick G A, et al, 2008.Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I Satellite observations[J].Journal of Hydrometeorology9(1): 22-47.DOI: 10.1175/2007jhm855_1 .
null
Nicolas J P Bromwich D H2011.Precipitation changes in high southern latitudes from global reanalyses: a cautionary tale[J].Surveys in Geophysics32(4): 475-494.DOI: 10.1007/s10712-011-9114-6 .
null
Nyg?rd T Valkonen T Vihma T2013.Antarctic Low-Tropospheric Humidity Inversions: 10-Yr Climatology[J].Journal of Climate26(14): 5205-5219.DOI: 10.1175/jcli-d-12-00446.1 .
null
Payne A E Demory M E Leung L R, et al, 2020.Responses and impacts of atmospheric rivers to climate change[J].Nature Reviews Earth & Environment1(3): 143-157.DOI: 10. 1038/s43017-020-0030-5 .
null
Pohl B Saucède T Favier V, et al, 2021.Recent climate variability around the Kerguelen Islands (Southern Ocean) seen through weather regimes[J].Journal of Applied Meteorology and Climatology60(5): 711-731.DOI: 10.1175/JAMC-D-20-0255.1 .
null
Ralph F M Iacobellis S F Neiman P J, et al, 2017.Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers[J].Journal of Hydrometeorology18(9): 2577-2596.DOI: 10.1175/jhm-d-17-0036_1 .
null
Ralph F M Neiman P J Wick G A2004.Satellite and CALJET aircraft observations of atmospheric rivers over the Eastern North Pacific Ocean during the winter of 1997/98[J].Monthly Weather Review132(7): 1721-1745.DOI: 10.1175/1520-0493(2004)132<1721: SACAOO>2.0.CO; 2 .
null
Rauber R M Hu H Dominguez F, et al, 2020.Structure of an atmospheric river over Australia and the Southern Ocean.Part I: tropical and midlatitude water vapor fluxes[J].Journal of Geophysical Research: Atmospheres125(18): e2020JD032513.DOI: 10.1029/2020JD032513 .
null
Rutz J J Steenburgh W J Ralph F M2014.Climatological characteristics of atmospheric rivers and their inland penetration over the Western United States[J].Monthly Weather Review142(2): 905-921.DOI: 10.1175/mwr-d-13-00168.1 .
null
Saha S Moorthi S Wu X, et al, 2014.The NCEP Climate forecast system version 2[J].Journal of Climate27(6): 2185-2208.DOI: 10.1175/jcli-d-12-00823.1 .
null
Slivinski L C Compo G P Whitaker J S, et al, 2019.Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system[J].Quarterly Journal of the Royal Meteorological Society145(724): 2876-2908.DOI: 10.1002/qj.3598 .
null
Turner J Lu H King J C, et al, 2022.An extreme high temperature event in coastal east antarctica associated with an atmospheric river and record summer downslope winds[J].Geophysical Research Letters49(4): e2021GL097108.DOI: 10.1029/2021GL097108 .
null
Turner J Phillips T Thamban M, et al, 2019.The dominant role of extreme precipitation events in antarctic snowfall variability[J].Geophysical Research Letters46(6): 3502-3511.DOI: 10.1029/2018GL081517 .
null
Wille J D Favier V Dufour A, et al, 2019.West Antarctic surface melt triggered by atmospheric rivers[J].Nature Geoscience12(11): 911-916.DOI: 10.1038/s41561-019-0460-1 .
null
Wille J D Favier V Gorodetskaya I V, et al, 2021.Antarctic atmospheric river climatology and precipitation impacts[J].Journal of Geophysical Research: Atmospheres126(8): e2020JD033788.DOI: 10.1029/2020JD033788 .
null
Wille J D Favier V Jourdain N C, et al, 2022.Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula[J].Communications Earth & Environment3(1): 1-14.DOI: 10. 1038/s43247-022-00422-9 .
null
Zhu Y Newell R E1998.A proposed algorithm for moisture fluxes from atmospheric rivers[J].Monthly Weather Review126(3): 725-735.DOI: 10.1175/1520-0493(1998)126<0725: APAFMF>2.0.CO; 2 .
null
白云飞, 赵宇, 李树岭, 等, 2023.造成东北地区暴雪过程的温带气旋暖输送带特征研究[J].高原气象42(5): 1271-1284.DOI: 10.7522/j.issn.1000-0534.2022.00108.Bai Y F
null
Zhao Y Li S L, et al, 2023.Characteristics of warm conveyor belts in extratropical cyclones causing snowstorms in Northeastern China[J].Plateau Meteorology42(5): 1271-1284.DOI: 10.7522/j.issn.1000-0534.2022.00108 .
null
傅良, 效存德, 卞林根, 等, 2015.南极东部高原夏季大气垂直结构分析[J].高原气象34(2): 299-306.DOI: 10.16441/j.cnki.hdxb.20190251.Liang F
null
Xiao C D Bian L G, et al, 2015.Vertical structure of atmosphere on east Antarctic Plateau[J].Plateau Meteorology34(2): 299-306.DOI: 10.16441/j.cnki.hdxb.20190251 .
null
黄子怡, 赵宇, 李树岭, 等, 2023.东北地区温带气旋暴雪过程的大气河特征[J].高原气象42(3): 734-747.DOI: 10.7522/j.issn.1000-0534.2022.00076.Huang Z Y
null
Zhao Y Li S L, et al, 2023.Characteristics of the atmospheric rivers in snowstorms caused by extratropical cyclones in Northeastern China.Plateau Meteorology[J].Plateau Meteorology42(3): 734-747.DOI: 10.7522/j.issn.1000-0534.2022.00076 .
null
王卫国, 樊雯璇, 金建德, 等, 2007.全球穿越对流层顶质量通量的时空变化特征[J].高原气象26(5): 910-920.
null
Wang W G Fan W X Jin J D, et al, 2007.The characteristics of spatial-temporal variations of the global cross-tropopause mass flux[J].Plateau Meteorology26(5): 910-920.
null
易笑园, 张庆, 陈宏, 等, 2023.一次华北暴风雪过程中边界层中尺度扰动涡旋和水汽输送特征的分析[J].高原气象42(5): 1311-1324.DOI: 10.7522/j.issn.1000-0534.2022.00079.Yi X Y
null
Zhang Q Chen H, et al, 2023.Analysis of planetary boundary layer mesoscale disturbance vortex and moisture transport during a blizzard process in North China[J].Plateau Meteorology42(5): 1311-1324.DOI: 10.7522/j.issn.1000-0534.2022.00079 .
文章导航

/