null | Adusumilli S A, Fish M, Fricker H A, et al, 2021.Atmospheric river precipitation contributed to rapid increases in surface height of the West Antarctic Ice sheet in 2019[J]. Geophysical Research Letters, 48(5): e2020GL091076.DOI: 10.1029/2020GL091076 . |
null | Baiman R, Winters A C, Lenaerts J, et al, 2023.Synoptic drivers of atmospheric river induced precipitation near Dronning Maud Land, Antarctica[J]. Journal of Geophysical Research: Atmospheres, 128(7): e2022JD037859.DOI: 10.1029/2022JD037859 . |
null | Bozkurt D, Rondanelli R, Marín J C, et al, 2018.Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica[J]. Journal of Geophysical Research: Atmospheres, 123(8): 3871-3892.DOI: 10.1002/2017JD027796 . |
null | Bracegirdle T J, Marshall G J, 2012.The reliability of antarctic tropospheric pressure and temperature in the latest global reanalyses[J]. Journal of Climate, 25(20): 7138-7146.DOI: 10.1175/jcli-d-11-00685.1 . |
null | Bromwich D H, Nicolas J P, Monaghan A J, 2011.An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses[J]. Journal of Climate, 24(16): 4189-4209.DOI: 10.1175/2011jcli4074.1 . |
null | Cobb A, Delle Monache L, Cannon F, et al, 2021.Representation of dropsonde-observed atmospheric river conditions in reanalyses[J]. Geophysical Research Letters, 48(15): e2021GL093357.DOI: 10.1029/2021GL093357 . |
null | Dee D P, Uppala S M, Simmons A J, et al, 2011.The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 137(656): 553-597.DOI: 10.1002/qj.828 . |
null | Edholm J M, Swart S, Plessis M D, et al, 2022.Atmospheric rivers contribute to summer surface Buoyancy forcing in the Atlantic Sector of the Southern Ocean[J]. Geophysical Research Letters, 49(17): e2022GL100149.DOI: 10.1029/2022GL100149 . |
null | Francis D, Mattingly K S, Temimi M, et al, 2020.On the crucial role of atmospheric rivers in the two major Weddell Polynya events in 1973 and 2017 in Antarctica[J]. Science Advances, 6(46): eabc2695.DOI: 10.1126/sciadv.abc2695 . |
null | Gelaro R, Mccarty W, Suárez M J, et al, 2017.The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2)[J]. Journal of Climate, 30(14): 5419-5454.DOI: 10.1175/jcli-d-16-0758.1 . |
null | Gershunov A, Shulgina T, Ralph F M, et al, 2017.Assessing the climate-scale variability of atmospheric rivers affecting western North America[J]. Geophysical Research Letters, 44(15): 7900-7908.DOI: 10.1002/2017GL074175 . |
null | Gorodetskaya I V, Silva T, Schmithüsen H, et al, 2020.Atmospheric river signatures in radiosonde profiles and reanalyses at the Dronning Maud Land Coast, East Antarctica[J]. Advances in Atmospheric Sciences, 37(5): 455-476.DOI: 10.1007/s00376-020-9221-8 . |
null | Gorodetskaya I V, Tsukernik M, Claes K, et al, 2014.The role of atmospheric rivers in anomalous snow accumulation in East Antarctica[J]. Geophysical Research Letters, 41(17): 6199-6206.DOI: 10.1002/2014GL060881 . |
null | Guan B, Waliser D E, 2015.Detection of atmospheric rivers: evaluation and application of an algorithm for global studies[J]. Journal of Geophysical Research: Atmospheres, 120(24): 12514-12535.DOI: 10.1002/2015JD024257 . |
null | Hepworth E, Messori G, Vichi M, 2022.Association between extreme atmospheric anomalies over Antarctic sea ice, Southern Ocean Polar Cyclones and atmospheric rivers[J]. Journal of Geophysical Research: Atmospheres, 127(7): e2021JD036121.DOI: 10.1029/2021JD036121 . |
null | Hersbach H, Bell B, Berrisford P, et al, 2020.The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049.DOI: 10.1002/qj.3803 . |
null | Inoue J, Yamazaki A, Ono J, et al, 2015.Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route[J]. Scientific Reports, 5(1): 16868.DOI: 10.1038/srep16868 . |
null | Jones P D, Lister D H, 2015.Antarctic near-surface air temperatures compared with ERA-Interim values since 1979[J]. International Journal of Climatology, 35(7): 1354-1366.DOI: 10.1002/joc.4061 . |
null | Jones R W, Renfrew I A, Orr A, et al, 2016.Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica[J]. Journal of Geophysical Research: Atmospheres, 121(11): 6240-6257[2023-10-23].DOI: 10.1002/2015JD024680 . |
null | Jung T, Gordon N D, Bauer P, et al, 2016.Advancing polar prediction capabilities on daily to seasonal time scales[J]. Bulletin of the American Meteorological Society, 97(9): 1631-1647.DOI: 10.1175/bams-d-14-00246.1.xml . |
null | Jung T, Matsueda M, 2016.Verification of global numerical weather forecasting systems in polar regions using TIGGE data[J]. Quarterly Journal of the Royal Meteorological Society, 142(695): 574-582.DOI: 10.1002/qj.2437 . |
null | Kobayashi S, Ota Y, Harada Y, et al, 2015.The JRA-55 reanalysis: general specifications and basic characteristics[J]. Journal of the Meteorological Society of Japan.Ser.II, 93(1): 5-48.DOI: 10. 2151/jmsj.2015-001 . |
null | Lavers D A, Villarini G, Allan R P, et al, 2012.The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation[J]. Journal of Geophysical Research: Atmospheres, 117(D20).DOI: 10.1029/2012JD018027 . |
null | Liang K, Wang J, Luo H, et al, 2023.The role of atmospheric rivers in Antarctic sea ice variations[J]. Geophysical Research Letters, 50(8): e2022GL102588.DOI: 10.1029/2022GL102588 . |
null | Maclennan M L, Lenaerts J T M, Shields C A, et al, 2023.Climatology and surface impacts of atmospheric rivers on West Antarctica[J]. The Cryosphere, 17(2): 865-881.DOI: 10. 5194/tc-17-865-2023 . |
null | Nash D, Waliser D, Guan B, et al, 2018.The role of atmospheric rivers in extratropical and polar hydroclimate[J]. Journal of Geophysical Research: Atmospheres, 123(13): 6804-6821.DOI: 10.1029/2017JD028130 . |
null | Neiman P J, Ralph F M, Wick G A, et al, 2008.Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I Satellite observations[J]. Journal of Hydrometeorology, 9(1): 22-47.DOI: 10.1175/2007jhm855_1 . |
null | Nicolas J P, Bromwich D H, 2011.Precipitation changes in high southern latitudes from global reanalyses: a cautionary tale[J]. Surveys in Geophysics, 32(4): 475-494.DOI: 10.1007/s10712-011-9114-6 . |
null | Nyg?rd T, Valkonen T, Vihma T, 2013.Antarctic Low-Tropospheric Humidity Inversions: 10-Yr Climatology[J]. Journal of Climate, 26(14): 5205-5219.DOI: 10.1175/jcli-d-12-00446.1 . |
null | Payne A E, Demory M E, Leung L R, et al, 2020.Responses and impacts of atmospheric rivers to climate change[J]. Nature Reviews Earth & Environment, 1(3): 143-157.DOI: 10. 1038/s43017-020-0030-5 . |
null | Pohl B, Saucède T, Favier V, et al, 2021.Recent climate variability around the Kerguelen Islands (Southern Ocean) seen through weather regimes[J]. Journal of Applied Meteorology and Climatology, 60(5): 711-731.DOI: 10.1175/JAMC-D-20-0255.1 . |
null | Ralph F M, Iacobellis S F, Neiman P J, et al, 2017.Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers[J]. Journal of Hydrometeorology, 18(9): 2577-2596.DOI: 10.1175/jhm-d-17-0036_1 . |
null | Ralph F M, Neiman P J, Wick G A, 2004.Satellite and CALJET aircraft observations of atmospheric rivers over the Eastern North Pacific Ocean during the winter of 1997/98[J]. Monthly Weather Review, 132(7): 1721-1745.DOI: 10.1175/1520-0493(2004)132<1721: SACAOO>2.0.CO; 2 . |
null | Rauber R M, Hu H, Dominguez F, et al, 2020.Structure of an atmospheric river over Australia and the Southern Ocean.Part I: tropical and midlatitude water vapor fluxes[J]. Journal of Geophysical Research: Atmospheres, 125(18): e2020JD032513.DOI: 10.1029/2020JD032513 . |
null | Rutz J J, Steenburgh W J, Ralph F M, 2014.Climatological characteristics of atmospheric rivers and their inland penetration over the Western United States[J]. Monthly Weather Review, 142(2): 905-921.DOI: 10.1175/mwr-d-13-00168.1 . |
null | Saha S, Moorthi S, Wu X, et al, 2014.The NCEP Climate forecast system version 2[J]. Journal of Climate, 27(6): 2185-2208.DOI: 10.1175/jcli-d-12-00823.1 . |
null | Slivinski L C, Compo G P, Whitaker J S, et al, 2019.Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system[J]. Quarterly Journal of the Royal Meteorological Society, 145(724): 2876-2908.DOI: 10.1002/qj.3598 . |
null | Turner J, Lu H, King J C, et al, 2022.An extreme high temperature event in coastal east antarctica associated with an atmospheric river and record summer downslope winds[J]. Geophysical Research Letters, 49(4): e2021GL097108.DOI: 10.1029/2021GL097108 . |
null | Turner J, Phillips T, Thamban M, et al, 2019.The dominant role of extreme precipitation events in antarctic snowfall variability[J]. Geophysical Research Letters, 46(6): 3502-3511.DOI: 10.1029/2018GL081517 . |
null | Wille J D, Favier V, Dufour A, et al, 2019.West Antarctic surface melt triggered by atmospheric rivers[J]. Nature Geoscience, 12(11): 911-916.DOI: 10.1038/s41561-019-0460-1 . |
null | Wille J D, Favier V, Gorodetskaya I V, et al, 2021.Antarctic atmospheric river climatology and precipitation impacts[J]. Journal of Geophysical Research: Atmospheres, 126(8): e2020JD033788.DOI: 10.1029/2020JD033788 . |
null | Wille J D, Favier V, Jourdain N C, et al, 2022.Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula[J]. Communications Earth & Environment, 3(1): 1-14.DOI: 10. 1038/s43247-022-00422-9 . |
null | |
null | |
null | Zhao Y, Li S L, et al, 2023.Characteristics of warm conveyor belts in extratropical cyclones causing snowstorms in Northeastern China[J]. Plateau Meteorology, 42(5): 1271-1284.DOI: 10.7522/j.issn.1000-0534.2022.00108 . |
null | |
null | Xiao C D, Bian L G, et al, 2015.Vertical structure of atmosphere on east Antarctic Plateau[J]. Plateau Meteorology, 34(2): 299-306.DOI: 10.16441/j.cnki.hdxb.20190251 . |
null | |
null | Zhao Y, Li S L, et al, 2023.Characteristics of the atmospheric rivers in snowstorms caused by extratropical cyclones in Northeastern China.Plateau Meteorology[J]. Plateau Meteorology, 42(3): 734-747.DOI: 10.7522/j.issn.1000-0534.2022.00076 . |
null | 王卫国, 樊雯璇, 金建德, 等, 2007.全球穿越对流层顶质量通量的时空变化特征[J].高原气象, 26(5): 910-920. |
null | Wang W G, Fan W X, Jin J D, et al, 2007.The characteristics of spatial-temporal variations of the global cross-tropopause mass flux[J].Plateau Meteorology, 26(5): 910-920. |
null | |
null | Zhang Q, Chen H, et al, 2023.Analysis of planetary boundary layer mesoscale disturbance vortex and moisture transport during a blizzard process in North China[J]. Plateau Meteorology, 42(5): 1311-1324.DOI: 10.7522/j.issn.1000-0534.2022.00079 . |