ERA5-Land青藏高原湖冰特征误差分析及FLake模式改进

  • 杨柳依依 ,
  • 文莉娟 ,
  • 王梦晓 ,
  • 苏东生 ,
  • 董靖玮
展开
  • 1. 中国科学院西北生态环境资源研究院 青海湖综合观测研究站,甘肃 兰州 730000
    2. 中国科学院大学,北京 100049
    3. 成都信息工程大学大气科学学院,四川 成都 610225

杨柳依依(1999 -), 女, 江苏人, 硕士研究生, 主要从事湖冰模拟研究. E-mail:

收稿日期: 2023-06-24

  修回日期: 2024-02-04

  网络出版日期: 2024-02-04

基金资助

国家自然科学基金项目(42275044); 中国科学院“西部之光”项目(E129030101); 甘肃省自然科学基金项目(22JR5RA073)

Error Analysis of Lake Ice Characteristics of ERA5-Land and FLake Model Improvement on the Qinghai-Xizang Plateau

  • Liuyiyi YANG ,
  • Lijuan WEN ,
  • Mengxiao WANG ,
  • Dongsheng SU ,
  • Jingwei DONG
Expand
  • 1. Qinghai Lake Comprehensive Observation and Research station,Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. University of Chinese Academy of Sciences,Beijing 100049,China
    3. College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China

Received date: 2023-06-24

  Revised date: 2024-02-04

  Online published: 2024-02-04

摘要

青藏高原上湖泊众多, 其中大多数被季节性湖冰覆盖。湖冰对气候变化响应敏感, 其生消过程会显著改变湖-气交换通量。而现有的高原湖冰长时间观测数据较少, 需要利用湖冰再分析资料进行研究。但目前对ERA5-Land湖冰资料在高原的适用性及改进方法还不甚清楚。因此, 本文首先利用2010 -2022年青海湖和鄂陵湖的湖冰观测数据, 评估了ERA5-Land再分析资料对青藏高原典型湖泊湖冰特征的模拟能力。结果表明: ERA5-Land资料对青海湖和鄂陵湖的冰厚平均高估0.54~0.62 m, 对封冻期天数高估约68 d·a-1。其次对再分析湖冰数据误差来源进行分析, 通过对比ERA5-Land和鄂陵湖观测资料及其各自驱动模式的模拟结果, 得出误差主要来源于输出ERA5-Land湖冰数据的FLake一维湖泊模式。最后基于2010 -2022年青海湖和鄂陵湖的MCD43A3地表反照率产品, 利用其多年平均反照率和动态日均反照率改进了FLake模型, 模拟冰厚平均偏差可分别减小85%和90%, 封冻期天数的模拟偏差减小了约6 d·a-1和8 d·a-1。两种方法均可以改进FLake模型对湖冰的模拟效果, 特别是对积雪覆盖时间较长的湖泊, 动态反照率方法改进效果更明显。本研究揭示了ERA5-Land湖冰特征的主要误差来源为FLake模式中的湖冰反照率, 并对该参数进行了改进, 提高了模型对湖冰的模拟效果, 可为提高ERA5-Land再分析湖冰数据在青藏高原典型湖泊的模拟精度提供参考。

本文引用格式

杨柳依依 , 文莉娟 , 王梦晓 , 苏东生 , 董靖玮 . ERA5-Land青藏高原湖冰特征误差分析及FLake模式改进[J]. 高原气象, 2024 , 43(5) : 1125 -1137 . DOI: 10.7522/j.issn.1000-0534.2024.00011

Abstract

The Qinghai-Xizang Plateau, distinguished by its vast array of lakes, exhibits marked seasonal lake ice coverage, which is highly responsive to climatic shifts.This ice coverage plays a crucial role in the dynamic interchange of fluxes between the lake surfaces and the atmosphere.Despite the significance of these ice phenomena, the limited availability of extensive, long-term observational data on plateau lake ice has led to a reliance on reanalyzed ice datasets, particularly ERA5-Land.This study aims to rigorously evaluate the effectiveness and potential enhancements of ERA5-Land's lake ice data in the distinct environment of the Qinghai-Xizang Plateau.Focusing on data collected from 2010 to 2022 for Qinghai Lake and Ngoring Lake, this research meticulously examines the ERA5-Land reanalysis data's ability to accurately capture the intrinsic characteristics of plateau lake ice.The study uncovered that ERA5-Land tends to overestimate the ice thickness by about 0.54~0.62 m and erroneously prolongs the freezing period by roughly 68 days per year for these lakes.This notable discrepancy necessitated an in-depth error analysis, which synthesized ERA5-Land data with direct observational data from Ngoring Lake, revealing that inaccuracies primarily originated from the FLake one-dimensional lake model within the ERA5-Land system.In an effort to address these inaccuracies, the study employed the MCD43A3 surface albedo product for both Qinghai Lake and Ngoring Lake over the same period.This innovative approach significantly refined the FLake model by incorporating both a multi-year average albedo and a dynamic daily average albedo.These methodological improvements led to a substantial reduction in the average bias of ice thickness, by 85% and 90% respectively, and narrowed the deviation in the modeled freezing period by about 6 and 8 days per year.The enhancements were particularly notable in lakes with longer periods of snow cover, where the dynamic albedo adjustment proved to be highly effective.This research has successfully identified the albedo parameter within the FLake model as a key source of error in ERA5-Land's lake ice characterizations and has implemented practical adjustments to rectify this.These enhancements have markedly increased the model's precision in simulating lake ice, thereby significantly improving the accuracy of ERA5-Land reanalyzed lake ice data.This advancement is particularly pertinent for the unique climatic and geographical conditions of Qinghai Lake and Ngoring Lake on the Qinghai-Xizang Plateau and offers invaluable insights for future research and practical applications in this domain.The findings of this study contribute profoundly to our understanding and modeling of lake ice phenomena in high-altitude regions and have broader implications for climatological research and environmental monitoring on the Qinghai-Xizang Plateau.

参考文献

null
Alghamdi A S2020.Evaluation of four reanalysis datasets against radiosonde over Southwest Asia[J].Atmosphere11(4): 402.DOI: 10.3390/atmos11040402 .
null
Bai Q X Li R L Li Z J, et al, 2016.Time-series analyses of water temperature and dissolved oxygen concentration in Lake Valkea-Kotinen (Finland) during ice season[J].Ecological Informatics, 36: 181-189.DOI: 10.1016/j.ecoinf.2015.06.009 .
null
Balsamo G Albergel C Beljaars A, et al, 2015.ERA-Interim/Land: a global land surface reanalysis data set[J].Hydrology and Earth System Sciences19(1): 389-407.DOI: 10.5194/hess-19-389-2015 .
null
Bernus A Ottlé C2022.Modeling subgrid lake energy balance in ORCHIDEE terrestrial scheme using the FLake lake model[J].Geoscientific Model Development15(10): 4275-4295.DOI: 10.5194/gmd-15-4275-2022 .
null
Bernus A Ottlé C Raoult N2021.Variance based sensitivity analysis of FLake Lake Model for global land surface modeling[J].Journal of Geophysical Research: Atmospheres126(8): e2019JD031928. DOI:10.1029/2019JD031928 .
null
Bongioannini C P Saraceni M Silvestri L, et al, 2022.Monitoring the water mass balance variability of small shallow lakes by an ERA5-Land Reanalysis and water level measurement-based model.An application to the Trasimeno Lake, Italy[J].Atmosphere13(6): 949.DOI: 10.3390/atmos13060949 .
null
Dutra E Stepanenko V M Balsamo G, et al, 2010.An offline study of the impact of lakes on the performance of the ECMWF surface scheme[J].Boreal Environment Research, 15: 100-112.
null
ECMWF, 2022.ERA5-Land: data documentation.
null
Efremova T V Pal’shin N I2011.Ice phenomena terms on the water bodies of Northwestern Russia[J].Russian Meteorology and Hydrology36(8): 559-565.DOI: 10.3103/S1068373911080085 .
null
Filazzola A Blagrave K Imrit M A, et al, 2020.Climate change drives increases in extreme events for lake ice in the Northern Hemisphere[J].Geophysical Research Letters47(18): e2020GL089608.DOI:10.1029/2020GL089608 .
null
Huang L Wang X H Sang Y X, et al, 2021.Optimizing lake surface water temperature simulations over large lakes in China With FLake Model[J].Earth and Space Science8(8)[2023-03-09]. DOI: 10.1029/2021EA001737 .
null
Immerzeel W W Van Beek L P H Bierkens M F P2010.Climate change will affect the Asian water towers[J].Science328(5984): 1382-1385.DOI: 10.1126/science.1183188 .
null
Jiao M D Zhao L Wang C, et al, 2023.Spatiotemporal variations of Soil temperature at 10 and 50 cm depths in permafrost regions along the Qinghai-Tibet Engineering Corridor[J].Remote Sensing15(2): 455.DOI: 10.3390/rs15020455 .
null
Kirillin G Hochschild J Mironov D, et al, 2011.FLake-global: online lake model with worldwide coverage[J].Environmental Modelling & Software26(5): 683-684.DOI: 10.1016/j.envsoft.2010.12.004 .
null
Lang J H Lyu S H Li Z H, et al, 2018.An Investigation of ice surface albedo and its influence on the high-altitude lakes of the Tibetan Plateau[J].Remote Sensing10(2): 218.DOI: 10.3390/rs10020218 .
null
Layden A MacCallum S N Merchant C J2016.Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1)[J].Geoscientific Model Development9(6): 2167-2189.DOI: 10.5194/gmd-9-2167-2016 .
null
Lazhu, Yang K Wang J B, et al, 2016.Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau: LAKE EVAPORATION AND ITS CHANGE[J].Journal of Geophysical Research: Atmospheres121(13): 7578-7591.DOI: 10.1002/2015JD024523 .
null
Lepp?ranta M2014.Freezing of lakes and the evolution of their ice cover[M].Springer, Berlin, Heidelberg.
null
Li H Y Chen R S Han C T, et al, 2022.Evaluation of the spatial and temporal variations of condensation and desublimation over the Qinghai-Tibet Plateau based on penman model using hourly ERA5-Land and ERA5 reanalysis datasets[J].Remote Sensing14(22): 5815.DOI: 10.3390/rs14225815 .
null
Li X D Long D Huang Q, et al, 2022.The state and fate of lake ice thickness in the Northern Hemisphere[J].Science Bulletin67(5): 537-546.DOI: 10.1016/j.scib.2021.10.015 .
null
Li Z G Ao Y H Lyu S H, et al, 2018.Investigation of the ice surface albedo in the Tibetan Plateau lakes based on the field observation and MODIS products[J].Journal of Glaciology64(245): 506-516.DOI: 10.1017/jog.2018.35 .
null
Li Z G Lyu S H Wen L J, et al, 2021.Study of freeze-thaw cycle and key radiation transfer parameters in a Tibetan Plateau lake using LAKE2.0 model and field observations[J].Journal of Glaciology67(261): 91-106.DOI: 10.1017/jog.2020.87 .
null
Lin D J Yuan X Jia B H, et al, 2023.Assessment of high-resolution surface soil moisture products over the Qinghai-Tibet Plateau for 2009-2017[J].Atmosphere14(2): 302.DOI: 10. 3390/atmos14020302 .
null
Meng X L Lyu S H Li Z G, et al, 2023.Dataset of comparative observations for land surface processes over the semi-arid alpine grassland against alpine lakes in the source region of the Yellow River[J].Advances in Atmospheric Sciences, [2023-03-07].
null
Mironov D2008. Parameterization of lakes in numerical weather prediction: Description of a lake model COSMO[M]. Deutscher Wetterdienst: Tech Rep No. 11. Deutscher Wetterdienst Offenbach am Main, Germany.
null
Mu?oz-Sabater J Dutra E Agustí-Panareda A, et al, 2021.ERA5-Land: a state-of-the-art global reanalysis dataset for land applications[J].Earth System Science Data13(9): 4349-4383.DOI: 10.5194/essd-13-4349-2021 .
null
Qiu Y B2019.River lake ice phenology data in QPT V1.0 (2002-2018)[DB].National Tibetan Plateau / Third Pole Environment Data Center.DOI.org/10.11888/Meteoro.tpdc.270236.
null
Rakhmatova N Arushanov M Shardakova L, et al, 2021.Evaluation of the perspective of ERA-Interim and ERA5 reanalyses for calculation of drought indicators for Uzbekistan[J].Atmosphere12(5): 527.DOI: 10.3390/atmos12050527 .
null
Román M O Schaaf C B Lewis P, et al, 2010.Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes[J].Remote Sensing of Environment114(4): 738-760.DOI: 10.1016/j.rse.2009.11.014 .
null
Salgado R Moigne P L2010.Coupling of the FLake model to the SURFEx externalized surface model[J].Boreal Environment Research15(2): 231-244.
null
Sharma S Magnuson J J Batt R D, et al, 2016.Direct observations of ice seasonality reveal changes in climate over the past 320-570 years[J].Scientific Reports6(1): 25061.DOI: 10.1038/srep25061 .
null
Su D S Hu X Q Wen L J, et al, 2019.Numerical study on the response of the largest lake in China to climate change[J].Hydrology and Earth System Sciences23(4): 2093-2109.DOI: 10. 5194/hess-23-2093-2019 .
null
Vavrus S J Wynne R H Foley J A1996.Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model[J].Limnology and Oceanography41(5): 822-831.DOI: 10.4319/lo.1996.41.5.0822 .
null
Vavrus S Notaro M Zarrin A2013.The role of ice cover in heavy lake-effect snowstorms over the Great Lakes Basin as simulated by RegCM4[J].Monthly Weather Review141(1): 148-165.DOI: 10.1175/MWR-D-12-00107.1 .
null
Wen L J Lyu S H Kirillin G, et al, 2016.Airlake boundary layer and performance of a simple lake parameterization scheme over the Tibetan highlands[J].Tellus A: Dynamic Meteorology and Oceanography68(1): 31091.DOI: 10.3402/tellusa.v68.31091 .
null
Zhang G Q Yao T D Chen W F, et al, 2019.Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes[J].Remote Sensing of Environment, 221: 386-404.DOI: 10.1016/j.rse.2018.11.038 .
null
Zhou X, Lazhu, Yao X N, et al, 2023.Understanding two key processes associated with alpine lake ice phenology using a coupled atmosphere-lake model[J].Journal of Hydrology: Regional Studies, 46: 101334.DOI: 10.1016/j.ejrh.2023.101334 .
null
边晴云, 吕世华, 陈世强, 等, 2016.黄河源区降雪对不同冻融阶段土壤温湿变化的影响[J].高原气象35(3): 621-632.DOI: 10.7522/j.issn.1000-0534.2016.00029.Bian Q Y
null
S H Chen S Q, et al, 2016.Influence of Snowfall on soil temprature and moisture in source region of the Yellow River during different freezing and thawing stages[J].Plateau Meteorology35(3): 621-632.DOI: 10.7522/j.issn.1000-0534.2016.00029 .
null
陈艳春, 王娜, 顾伟宗, 等, 2017.环渤海区域再分析资料地面风速场的适用性对比分析[J].海洋气象学报37(1): 67-72.DOI: 10.19513/j.cnki.issn2096-3599.2017.01.007.Chen Y C
null
Wang N Gu W C, et al, 2017.Comparative analysis of wind velocity of reanalysis datasets over the Bohai Rim Region[J].Journal of Marine Meteorology37(1): 67-72.DOI: 10.19513/j.cnki.issn2096-3599.2017.01.007 .
null
苟照君, 刘峰贵, 2019.鄂陵湖[J].全球变化数据学报(中英文)3(1): 91-92+200-201.DOI: 10.3974/geodp.2019.03.14.Gou Z J
null
Liu F G2019.Ngoring Lake, Qinghai-Tibet Plateau, China[J].Journal of Global Change Data & Discovery3(1): 91-92+200-201.DOI: 10.3974/geodp.2019.03.14 .
null
李小雁,2020.祁连山综合观测网:青海湖流域地表过程综合观测网(青海湖湖面气象要素梯度观测系统-2019)[DB].国家青藏高原科学数据中心.Li X Y, 2020.Qilian Mountains integrated observatory network: dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Yulei station on Qinghai lake, 2019)[DB].National Tibetan Plateau / Third Pole Environment Data Center.DOI: 10.11888/Meteoro.tpdc.270732 .
null
马绎皓, 毛睿, 杨阳, 等, 2023.ERA5再分析资料对甘肃省近地面风速气候特征及变化趋势再现能力的评估[J].高原气象42(1): 210-220.DOI: 10.7522/j.issn.1000-0534.2022.00030.Ma YH
null
Mao R Yang Y, et al, 2023.Evaluation of the ERA5 reanalysis data on the near-surface wind speed climate characteristics and change trend reproduction ability in Gansu Province[J].Plateau Meteorology42(1): 210-220.DOI: 10.7522/j.issn.1000-0534.2022.00030 .
null
牛瑞佳, 文莉娟, 王梦晓, 等, 2023.积雪和沙尘对冰封期青海湖辐射和温度的影响[J].高原气象42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021.Niu R J
null
Wen L J Wang M X, et al, 2023.Effects of snow and dust on radiation and temperature in Qinghai Lake during ice-covered period[J].Plateau Meteorology42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021 .
null
青海省水利厅, 青海省统计局, 2015.青海省第一次水利普查公报[J].青海统计(10): 34-39.
null
Qinghai Provincial Department of Water Resources, Qinghai Provincial Bureau of Statistics, 2015.Bulletin of the first water resources census in Qinghai Province[J].Qinghai Statistics(10): 34-39.
null
邱玉宝, 2019.青藏高原河湖冰物候数据集V1.0(2002-2018)[DB/OL].国家青藏高原科学数据中心, DOI: 10.11888/Meteoro.tpdc. 270236.https: //cstr.cn/18406.11.Meteoro.tpdc.270236.Qiu Y B, 2019.River lake ice phenology data in QPT V1.0 (2002-2018)[DB/OL].National Tibetan Plateau / Third Pole Environment Data Center.Doi.org/10.11888/Meteoro.tpdc. 270236.
null
汪关信, 张廷军, 李晓东, 等, 2021.利用被动微波探测青海湖湖冰物候变化特征[J].冰川冻土43(1): 296-310.DOI: 10.7522/j.issn.1000-0240.2020.0528.Wang G X
null
Zhang T J Li X D, et al, 2021.Detecting changes of ice phenology using satellite passive microwave remote sensing data in Qinghai Lake[J].Journal of Glaciology and Geocryology43(1): 296-310.DOI: 10.7522/j.issn.1000-0240.2020.0528 .
null
吴佳, 吴婕, 闫宇平, 2022.1961-2020年青藏高原地表风速变化及动力降尺度模拟评估[J].高原气象41(4): 963-976.DOI: 10.7522/j.issn.1000-0534.2022.00065.Wu J
null
Wu J Yan Y P2022.Changes of surface wind speed over Qinghai-Xizang Plateau from 1961 to 2020 and evaluation of the dynamical downscaling simulations[J].Plateau Meteorology41(4): 963-976.DOI: 10.7522/j.issn.1000- 0534.2022.00065 .
null
姚檀栋, 陈发虎, 崔鹏, 等, 2017.从青藏高原到第三极和泛第三极[J].中国科学院院刊32(9): 924-931.DOI: 10.16418/j.issn.1000-3045.2017.09.001.Yao T D
null
Chen F H Cui P, et al, 2017.From Tibetan Plateau to Third Pole and Pan-Third Pole[J].Bulletin of Chinese Academy of Sciences32(9): 924-931.DOI: 10.16418/j.issn.1000-3045.2017.09.001 .
null
周柯, 2019.基于Landsat影像的青藏高原东北部典型湖泊面积时序变化研究[D].北京: 中国地质大学, DOI: 10.27493/d.cnki.gzdzy.2019.000987.Zhou K, 2019.Time series variation of typical lake area in northeastern Tibetan Plateau based on Landsat image[J].Beijing: China University of Geosciences Beijing, DOI: 10.27493/d.cnki.gzdzy.2019.000987 .
null
周盛盛, 2021.青海湖水体面积4625.6平方公里增至17年来最大值[EB/OL].青海省人民政府新闻办公室.2021.The water area of Qinghai Lake has increased to 4625.6square kilometers, the highest in 17 years[EB/OL].Office Infomation, the People's Government of Qinghai Province.
文章导航

/