基于风廓线雷达的四川盆地西部强降水过程风场特征
收稿日期: 2023-10-20
修回日期: 2024-04-16
网络出版日期: 2024-04-16
基金资助
国家重点研发计划课题(2021YFC3000905); 四川省气象局智能网格预报创新团队课题(SCQXCXTD-202201); 高原与盆地暴雨旱涝灾害四川省重点实验室课题重点专项(SCQXKJZD202101)
Wind Field Characteristics of Heavy Precipitation Process in Western Sichuan Basin Based on Wind Profiler Radar Data
Received date: 2023-10-20
Revised date: 2024-04-16
Online published: 2024-04-16
根据暖区暴雨的分型(西南涡型、 副热带高压边缘型、 西南急流型和东南风型), 选取四类天气背景下四川盆地西部(成都地区)的暴雨过程, 利用风廓线雷达新资料, 详细分析了青藏高原-四川盆地特殊地形下, 不同类型暖区暴雨中典型强降水发生、 发展时的风廓线特征。研究表明: (1)风廓线雷达资料可以很清楚地表现出对流层及边界层存在的中小尺度系统, 不同类型强降水过程的风场演变特征同特殊地形与区域环流及天气系统的相互作用密切相关, 除副高边缘型外, 其他三种类型暖区暴雨典型过程发生前或发生时都出现了边界层东北风或偏东风; (2)垂直速度变化梯度大, 直观地体现了这几次过程时间短、 对流强的特征, 降水开始后, 向下的垂直速度明显减弱甚至转向的突变时期, 代表气层中上升运动的明显增强, 这种垂直速度的突变对于强降水的预测有指示意义; (3)垂直速度极值在强降水发生前或发生时会明显增大, 并伴随有极值层降低的现象, 水平风速极值和极值层有同步的增减趋势, 大部分强降水过程发生前, 中层都出现了中尺度急流, 并伴随急流层的降低; (4)在这四种类型的暴雨过程中都有低空急流的参与, 其中副高边缘型和西南涡型暴雨过程中, 低空急流指数第一次增大都对降水的开始有1~2 h的预报提前量, 而在东南风型和西南涡型过程中低空急流指数的突增预示了降水强度的增大。
胡迪 , 谢晓林 , 陈朝平 , 周秋雪 . 基于风廓线雷达的四川盆地西部强降水过程风场特征[J]. 高原气象, 2025 , 44(1) : 240 -252 . DOI: 10.7522/j.issn.1000-0534.2024.00061
According to the classification of warm-sector rainstorm (the southwest vortex, the edge of subtropical high, the southwest jet, and the southeast wind types), four rainstorm processes are selected under the different weather background in the west of Sichuan Basin (Chengdu area).The wind profile characteristics of heavy precipitation in the initial and developmental stages are analyzed by using the new wind profiler radar data in different types of warm-sector rainstorms.The main results are as follows: (1) Wind profiler radar data can clearly show the meso-scale systems that exists in the troposphere and boundary layer.The evolution characteristics of wind field in different types of heavy precipitation are closely related to the interaction of the unique terrain of the Qinghai-Xizang Plateau and the Sichuan Basin with the regional circulation and weather system.Except for the edge of subtropical high warm-sector rainstorm, the northeast wind or easterly wind appeared before or during the typical process of the other three warm-sector rainstorms.(2) A large gradient of vertical velocity intuitively reflects the characteristics of short time and strong convection in these processes.There is a sudden change of vertical velocity at the beginning of heavy precipitation, that the downward vertical velocity is apparently weakened or even turned to the upward, which means the upward motion in the atmosphere is significantly enhanced.This abrupt change in vertical velocity has indicative significance for the prediction of heavy precipitation.(3) The extremum of vertical velocity will increase significantly before or during the heavy precipitation, accompanied by the decrease of the extreme layer height, due to the fall of precipitation particles.During the southwest vortex rainstorm, the change of the extremum of vertical velocity was basically ahead of the change of precipitation intensity by half hour to 1 hour.The extremum of horizontal wind speed and the extreme layer height change synchronously.Before the most of heavy precipitation processes, the meso-scale jet appeared in the mesosphere, accompanied by the decrease of the jet layer.(4) Low-level jet is involved in all four types of warm-sector rainstorm.In the process of the edge of subtropical high and the southwest vortex rainstorm, the precipitation could be predicted after 1 hour to 2 hours by the first increase of low-level jet index.The low-level jet could provide water vapor and turbulence during heavy precipitation.Therefore, in the process of the southeast wind and the southwest vortex rainstorm, the sudden increase of low-level jet index predicts the increasing intensity of precipitation.
null | |
null | |
null | |
null | 杨大升, 1978.行星边界层对低涡降水过程的作用/暴雨文集[M].长春: 吉林人民出版社, 47-57. |
null | |
null | 陶诗言, 丁一汇, 周晓平, 1979.暴雨和强对流天气的研究[J].大气科学, 3(3): 227-238. |
null | |
null | 白莹莹, 张焱, 高阳华, 等, 2011.四川盆地降水变化的区域差异[J].地理科学, 31(4): 478-484. |
null | |
null | 陈红玉, 高月忠, 尹丽云, 等, 2016.强降水过程风廓线雷达资料的极值特征[J].气象科技, 44(1): 87-94. |
null | |
null | 陈娟, 尹洁, 何文 等, 2016.风廓线雷达资料在江西梅雨锋暴雨天气过程中的分析应用[J].气象与减灾研究, 39(3): 206-215.DOI: 10.12013/qxyjzyj2016-026.Chen J , |
null | |
null | 陈楠, 胡明宝, 张柽柽, 等, 2014.利用风廓线雷达资料对南京地区低空急流的统计分析[J].热带气象学报, 30(3): 511-517.DOI: 10.3969/j.issn.1004-4965.2014.03.012.Chen N , |
null | |
null | 陈双, 孙继松, 何立富, 2022.四川盆地不同落区的三次强降水过程多尺度特征分析[J].高原气象, 41(5): 1190-1208.DOI: 10.7522/j.issn.1000-0534.2021.00060.Chen S , |
null | |
null | 方桃妮, 黄艳, 叶妍婷, 等, 2022.边界层风廓线雷达资料在浙中强对流天气中的应用[J].气象科技, 50(3): 369-379. |
null | |
null | 苟阿宁, 吴翠红, 王玉娟, 等, 2022.基于风廓线雷达的湖北梅雨期暴雨中小尺度特征[J].干旱气象, 40(1): 84-94. |
null | |
null | 胡迪, 李跃清, 2015.青藏高原东侧四川地区夜雨时空变化特征[J].大气科学, 39(1): 161-179. DOI: 10.3878/j.issn.1006-9895.1405.13307.Hu D , |
null | |
null | 胡明宝, 2015.风廓线雷达探测与应用[M].北京: 气象出版社, 98-100. |
null | |
null | 何越, 何平, 林晓萌, 2014.基于双高斯拟合的风廓线雷达反演雨滴谱[J].应用气象学报, 25(5): 570-580. |
null | |
null | 黄书荣, 吴蕾, 马舒庆, 等, 2017.结合毫米波雷达提取降水条件下风廓线雷达大气垂直速度的研究[J].气象学报, 75(5): 823-834. |
null | |
null | 金巍, 曲岩, 姚秀萍, 等, 2007.一次大暴雨过程中低空急流演变与强降水的关系[J].气象, 33(12): 31-38. |
null | |
null | 李一诺, 李跃清, 2024. 近 20年华西秋雨演变特征及其异常机理的进展[J].高原气象, 43(1): 1-15.DOI: 10.7522/j.issn.1000-0534.2023.00028.Li Y N , |
null | |
null | 刘淑媛, 郑永光, 陶祖钰, 2003.利用风廓线雷达资料分析低空急流的脉动与暴雨关系[J].热带气象学报, 19(3): 285-290.DOI: 10.16032/j.issn.1004-4965.2003.03.008.Liu S Y , |
null | |
null | 李跃清, 1995.夏半年成都边界层风场与四川盆地暴雨的关系[J].高原气象, 14(2): 232-236. |
null | |
null | 李跃清, 1996.长江上游暴雨的边界层动力诊断研究[J].大气科学, 20(1): 73-78. |
null | |
null | 李跃清, 彭虎, 张波, 1997.成都边界层风场演变天气意义的检验[J].高原气象, 16(3): 331-336. |
null | |
null | 李跃清, 2000.1998年青藏高原东侧边界层风场与长江暴雨洪水的关系[J].大气科学, 24(5): 641-648. |
null | |
null | 李跃清, 张晓春, 2011.“雅安天漏”研究进展[J].暴雨灾害, 30(4): 289-295. |
null | |
null | 林晓萌, 何平, 黄兴友, 2015.一种抑制降水对风廓线雷达水平风干扰的方法[J].应用气象学报, 26(1): 66-75. |
null | |
null | 马建立, 阮征, 黄钰, 2015.风廓线雷达估测降水云中大气垂直速度的一种方法[J].高原气象, 34(3): 825-831.DOI: 10.7522/j.issn.1000-0534.2013.00161.Ma J L , |
null | |
null | 冉津江, 齐玉磊, 龙治平, 等, 2023.基于高密度站点的四川盆地短时强降水特征分析[J].高原气象, 42(4): 949-961.DOI: 10.7522/j.issn 1000-0534.2022.00044.Ran J J , |
null | |
null | 沈沛丰, 张耀存, 2011.四川盆地夏季降水日变化的数值模拟[J].高原气象, 30(4): 860-868. |
null | |
null | 宋巧云, 孙成云, 梁丰登, 2013.风廓线雷达在北京市气象局的业务应用[J].气象科技进展, 3(5): 24-28.DOI: 10.3969/j.issn.2095-1973.2013.05.004.Song Q Y , |
null | |
null | 唐红玉, 顾建峰, 俞胜宾, 等, 2011.西南地区降水日变化特征分析[J].高原气象, 30(2): 376-384. |
null | |
null | 王文波, 高晓梅, 李晓利, 等, 2020.一次雨雪天气过程的风廓线雷达特征[J].干旱气象, 38(1): 109-116. |
null | |
null | 王夫常, 宇如聪, 陈昊明, 等, 2011.我国西南部降水日变化特征分析[J].暴雨灾害, 30(2): 117-121. |
null | |
null | 王彦, 刘一玮, 孙晓磊, 2017.利用风廓线雷达资料分析一次强降水过程的风垂直切变特征[J].暴雨灾害, 36(2): 171-176.DOI: 10.3969/j.issn.1004-9045.2017.02.010.Wang Y , |
null | |
null | 王晓蕾, 2010.风廓线雷达探测降水云体中雨滴谱的试验研究[J].高原气象, 29(2): 498-505. |
null | |
null | 肖红茹, 王佳津, 肖递祥, 等, 2021.四川盆地暖区暴雨特征分析[J].气象, 47(3): 303-316.DOI: 10.7519/j.issn.1000-0526.2021.03.004.Xiao H R , |
null | |
null | 郁淑华, 何光碧, 滕家谟, 1997.青藏高原切变线对四川盆地西部突发性暴雨影响的数值试验[J].高原气象, 16(3): 83-88. |
null | |
null | 张寅, 樊超, 赵娜, 等, 2017.长安风廓线雷达测风资料的可靠性验证[J].干旱气象, 35(3): 507-515. |
null | |
null | 张小雯, 郑永光, 吴蕾, 等, 2017.风廓线雷达资料在天气业务中的应用现状与展望[J].气象科技, 45(2): 285-297.DOI: 10.19517/j.1671-6345.20150464.Zhang X W , |
null | |
null | 周旭辉, 马杰良, 吴蕾, 等, 2011.基于正交多项式拟合的风廓线雷达风谱识别[J].现代雷达, 33(11): 27-31. |
null |
/
〈 |
|
〉 |