论文

60年三江源地区降水集中度和季节性降水特征变化分析

  • 杜娟 ,
  • 于晓晶 ,
  • 黎小东 ,
  • 敖天其
展开
  • 1. 四川大学水利水电学院,四川 成都 610065
    2. 四川大学水力学与山区河流开发保护国家重点实验室,四川 成都 610065
    3. 新疆大学地理与遥感科学学院,新疆 乌鲁木齐 830046

杜娟(1990 -), 女, 内蒙古人, 博士研究生, 主要从事气候变化下水循环和极端气象水文事件研究E-mail:

收稿日期: 2023-09-10

  修回日期: 2023-12-04

  网络出版日期: 2023-12-04

基金资助

西藏省科技计划重点研发项目(XZ202101ZY0007G); 四川省科技计划重点研发项目(2021YFS0285); 湖北省自然科学基金项目(2022CFD013)

Analysis of Changes in Precipitation Concentration and Seasonal Precipitation Characteristics in the Three River Headwaters Region over the Past 60 Years

  • Juan DU ,
  • Xiaojing YU ,
  • Xiaodong LI ,
  • Tianqi AO
Expand
  • 1. College of Water Resource and Hydropower,Sichuan University,Chengdu 610065,China
    2. State Key Laboratory of Hydraulics and Mountain River Engineering,College of Water Resource and Hydro-power,Sichuan University,Chengdu 610065,Sichuan,China
    3. College of Geography and Remote Sensing Sciences,Xinjiang University,Urumqi 830046,Xinjiang,China

Received date: 2023-09-10

  Revised date: 2023-12-04

  Online published: 2023-12-04

摘要

三江源作为“中华水塔”, 是中国重要的淡水之源和生态系统屏障。降水集中度、 季节降水量、 降水频率和降水强度的演变是气候变暖背景下水循环的关键过程, 对植被生长和水资源管理具有重要意义。本研究利用中国气象局1961 -2020年的CN05.1日降水格点数据, 计算了三江源的降水集中度指数(Precipitation Concentration Index, PCI), 厘清了三江源降水集中度和降水年内分配的演变规律, 研究了季节降水量、 降水频率和降水强度的气候态、 年际变化、 长期趋势以及距平变化。研究结果表明: (1)三江源地区降水集中指数PCI为17.5, 降水具有一定集中性; 整个区域PCI由东南向西北递增, 降水集中度增大; 近60年三江源地区PCI以-1.71%·(10a)-1的变化率减小, 降水的年内分配趋于均匀; 生长季降水分配的减少将影响该地区农业生产和生态系统的维持。(2)近60年不同季节降水量和降水强度整体呈现显著增加趋势, 夏季降水频率减少, 其他季节降水频率增加; 春夏秋三个季节降水强度的增加主导了降水量的增加, 冬季降水频率的增加主导了降水量的增加。冬春季增湿高于夏秋季, 春季降水量和降水强度的增长率为8.09%·(10a)-1和6.94%·(10a)-1, 冬季降雪量和降雪频率的增长率为7.27%·(10a)-1和4.4%·(10a)-1; 长江源区部分地区的旱涝分布趋于极端化, 生态系统的脆弱性加剧。(3)近60年三江源区域平均的降水量、 降水频率和降水强度以每年1.36 mm、 0.024%和0.0056 mm·d-1的数值增加; 降水量、 降水频率和降水强度累积距平整体呈现负距平, 突变年份分别为2003年、 1989年和2003年; 雨季降水频率减小, 降水强度增加, 旱季降水频率和降水强度均增加, 这种变化在近10年尤为剧烈。本研究可以为该地区土壤侵蚀、 农业生产、 水资源管理以及气候变化相关研究提供参考。

本文引用格式

杜娟 , 于晓晶 , 黎小东 , 敖天其 . 近60年三江源地区降水集中度和季节性降水特征变化分析[J]. 高原气象, 2024 , 43(4) : 826 -840 . DOI: 10.7522/j.issn.1000-0534.2023.00095

Abstract

The Three River Headwaters (TRH) region, known as the “Water Tower of China”, is a crucial freshwater source and an ecological barrier in China.Changes in precipitation concentration, seasonal precipitation amount, frequency, and intensity is a key process of water cycle in the context of global warming, holding significant implications for vegetation growth and water resource management in the TRH region.In this study, utilizing the CN05.1 daily precipitation gridded dataset from 1961 to 2020 prepared by the China Meteorological Administration, the Precipitation Concentration Index (PCI) were calculated, and the evolving patterns of precipitation concentration and intra-annual distribution in the TRH region were clarified.The climatology, relative interannual variability, long-term trends, and anomalies of annual and seasonal precipitation amount, frequency, and intensity were investigated.The results find that: (1) Precipitation in the TRH region exhibits a certain degree of concentration with PCI of 17.5.PCI increased from southeast to northwest, suggesting an increased precipitation concentration.Over the past 60 years, PCI has declined at a rate of -1.71% per decade, indicating a trend towards more evenly distributed monthly precipitation throughout the year.It’s noteworthy that the reduction in the proportion of precipitation during the growing season may have ramifications for agricultural production and ecosystem maintenance in the TRH region.(2) Over the past six decades, there has been a significant overall increase in precipitation amount and intensity during different seasons.However, precipitation frequency decreased during summer while increasing in other seasons.Enhanced precipitation intensity has predominantly contributed to the rise in precipitation amount during spring, summer, and autumn, while increased precipitation frequency has played a dominant role in elevating precipitation amount during winter.The increase rate in humidity during winter and spring was higher than that during summer and autumn.In spring, precipitation amount and intensity increased by 8.09% and 6.94% per decade respectively, while winter saw snowfall amount and frequency grow by 7.27% and 4.4% per decade.Also noteworthy is the distribution of droughts and floods in parts of the Yangtze River source area tends towards extreme, exacerbating the ecosystem vulnerability.(3) The regional average precipitation amount, frequency, and intensity in the TRH region have shown an increase of 1.36 mm, 0.024%, and 0.0056 mm·d-1 per year over the past 60 years.The cumulative anomalies of precipitation amount, frequency, and intensity in the last 60 years were negative, with abrupt changes occurring in 2003, 1989, and 2003, respectively.There has been a significant decrease in precipitation frequency during the rainy season, coupled with a substantial increase in precipitation intensity.In contrast, both precipitation frequency and intensity during the dry season have experienced significant increases.These changes have been particularly pronounced in the past decade.This study can serve as a valuable reference for research concerning soil erosion, agricultural production, water resource management, and climate change in the TRH region.

参考文献

null
Apaydin H Erpul G Bayramin I, et al, 2006.Evaluation of indices for characterizing the distribution and concentration of precipitation: a case for the region of Southeastern Anatolia Project, Turkey[J].Journal of Hydrology328(3/4): 726-732.DOI: 10.1016/j.jhydrol.2006.01.019 .
null
Bhattacharyya S Sreekesh S2022.Assessments of multiple gridded‐rainfall datasets for characterizing the precipitation concentration index and its trends in India[J].International Journal of Climatology42(5): 3147-3172.DOI: 10.1002/joc.7412 .
null
Cao L G Pan S M2014.Changes in precipitation extremes over the “Three-River Headwaters” region, hinterland of the Tibetan Plateau, during 1960-2012[J].Quaternary International, 321: 105-115.DOI: 10.1016/j.quaint.2013.12.041 .
null
Chatterjee S Khan A Akbari H, et al, 2016.Monotonic trends in spatio-temporal distribution and concentration of monsoon precipitation (1901-2002), West Bengal, India[J].Atmospheric Research, 182, 54-75.DOI: 10.1016/j.atmosres.2016.07.010 .
null
Coscarelli R Caloiero T2012.Analysis of daily and monthly rainfall concentration in Southern Italy (Calabria region)[J].Journal of Hydrology416/417: 145-156.DOI: 10.1016/j.jhydrol.2011. 11.047 .
null
De Luís M Francisca GarcI?A-Cano M Cortina J, et al, 2001.Climatic trends, disturbances and short-term vegetation dynamics in a Mediterranean shrubland[J].Forest Ecology and Management147(1): 25-37.DOI: 10.1016/S0378-1127(00)00438-2 .
null
De Luís M González-Hidalgo J C Longares L A2010.Is rainfall erosivity increasing in the Mediterranean Iberian Peninsula[J].Land Degradation & Development21(2): 139-144.DOI: 10. 1002/ldr.918 .
null
De Luís M González-Hidalgo J C Raventós J1997.Distribucion espacial de la concentracion y agresividad de la lluvia en el territorio de la Comunidad Valenciana[J].Cuaternarioy Geomorfologia, 11: 33-44.
null
Ding Z Y Wang Y Y Lu R J2018.An analysis of changes in temperature extremes in the Three River Headwaters region of the Tibetan Plateau during 1961-2016[J].Atmospheric Research, 209: 103-114.DOI: 10.1016/j.atmosres.2018.04.003 .
null
Fatichi S Ivanov V Y Caporali E2012.Investigating interannual variability of precipitation at the global scale: is there a connection with seasonality?[J].Journal of Climate25(16): 5512-5523.DOI: 10.1175/JCLI-D-11-00356.1 .
null
Gong X W G H He X M, et al, 2019.High air humidity causes atmospheric water absorption via assimilating branches in the deep-rooted tree haloxylon ammodendron in an arid desert region of Northwest China[J].Frontiers in Plant Science, 10: 573.DOI: 10.3389/fpls.2019.00573 .
null
Higashino M Hayashi T Aso D2022.Temporal variability of daily precipitation concentration in Japan for a century: effects of air temperature rises on extreme rainfall events[J].Urban Climate, 46: 101323.DOI: 10.1016/j.uclim.2022.101323 .
null
Kamara S I Jackson I J1997.A new soil-moisture based classification of raindays and drydays and its application to Sierra Leone[J].Theoretical and Applied Climatology56(3-4): 199-213.DOI: 10.1007/BF00866427 .
null
Liang L Q Li L J Liu C M, et al, 2013.Climate change in the Tibetan Plateau Three Rivers Source Region: 1960-2009[J].InternationalJournal of Climatology33(13): 2900-2916.DOI: 10. 1002/joc.3642 .
null
Ma N Zhang Y Q2022.Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation[J].Agricultural and Forest Meteorology, 317: 108887.DOI: 10.1016/j.agrformet. 2022.108887 .
null
Ma Y M Han C B Zhong L, et al, 2013.Using MODIS and AVHRR data to determine regional surface heating field and heat flux distributions over the heterogeneous landscape of the Tibetan Plateau[J].Theoretical and Applied Climatology, 117.DOI: 10.1007/s00704-013-1035-5 .
null
Meng X H Li R Luan L, et al, 2017.Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau[J].Climate Dynamics, DOI: 10.1007/s00382-017-3646-5 .
null
Miao C Y Gou J J Fu B J, et al, 2022.High-quality reconstruction of China’s natural streamflow[J].Science Bulletin67(5): 547-556.DOI: 10.1016/j.scib.2021.09.022 .
null
Miao Y Wang A H2020.Evaluation of Routed-Runoff from Land Surface Models and Reanalyses Using Observed Streamflow in Chinese River Basins[J].Journal of Meteorological Research34(1): 73-87.DOI: 10.1007/s13351-020-9120-z .
null
Michiels P Gabriels D Hartmann R1992.Using the seasonal and temporal Precipitation concentration index for characterizing the monthly rainfall distribution in Spain[J].Catena19(1): 43-58.DOI: 10.1016/0341-8162(92)90016-5 .
null
Miner T J Fritsch J M1997.Lake-Effect Rain Events[J].Monthly Weather Review125(12): 3231.DOI: 10.1175/1520-0493(1997)1252.0.CO; 2 .
null
Oliver J E1980.Monthly precipitation distribution: a comparative index[J].The Professional Geographer32(3): 300-309.DOI: 10.1111/j.0033-0124.1980.00300.x .
null
Peng D D Zhou T J2017.Why was the arid and semiarid northwest China getting wetter in the recent decades?[J].Journal of Geophysical Research: Atmospheres122(17): 9060-9075.DOI: 10.1002/2016JD026424 .
null
Ren W H Gao Y Y Qian H, et al, 2023.Spatiotemporal variation characteristics of groundwater storage and its driving factors and ecological effects in Tibetan Plateau[J].Remote Sensing15(9): 2418.DOI: 10.3390/rs15092418 .
null
Tolika K2019.On the analysis of the temporal precipitation distribution over Greece using the Precipitation Concentration Index (PCI): annual, seasonal, monthly analysis and association with the atmospheric circulation[J].Theoretical and Applied Climatology137(3/4): 2303-2319.DOI: 10.1007/s00704-018-2736-6 .
null
Tong K Su F G Yang D Q, et al, 2014.Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau[J].Journal of Hydrology (Amsterdam), 519: 423-437.DOI: 10.1016/j.jhydrol.2014.07.044 .
null
Veals P G Steenburgh W J Campbell L S2018.Factors affecting the inland and orographic enhancement of lake-effect precipitation over the tug hill plateau[J].Monthly Weather Review146(6): 1745-1762.DOI: 10.1175/MWR-D-17-0385.1 .
null
Yao J Q Chen Y N Yu X J, et al, 2020.Evaluation of multiple gridded precipitation datasets for the arid region of northwestern China[J].Atmospheric Research, 236: 104818.DOI: 10.1016/j.atmosres.2019.104818 .
null
Yao T D Thompson L Yang W, et al, 2012.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J].Nature Climate Change, 2: 663-667.DOI: 10.1038/nclimate1580 .
null
Yu C Q Wang J W Shen Z X, et al, 2018.Effects of experimental warming and increased precipitation on soil respiration in an alpine meadow in the Northern Tibetan Plateau[J].Science of the Total Environment, 647: 1490-1497.DOI: 10.1016/j.scitotenv.2018.08.111 .
null
Zhang L J Qian Y F2003.Annual distribution features of precipitation in China and their interannual variations[J].Acta Meteorologica Sinica17(2): 146-163.
null
Zhou L Mohamed R A W Takeuchi K, et al, 2021.Adequacy of near real-time satellite precipitation products in driving flood discharge simulation in the Fuji River Basin, Japan[J].Applied Sciences, 11: 1087.DOI: 10.3390/app11031087 .
null
白晓兰, 魏加华, 解宏伟, 2017.三江源区干湿变化特征及其影响[J].生态学报37(24): 8397-8410.DOI: 10.5846/stxb201610102039.Bai X L
null
Wei J H Xie H W2017.Characteristics of wetness/dryness variation and their influences in the Three-River Headwaters region[J].Acta Ecologica Sinica37(24): 8397-8410.DOI: 10.5846/stxb201610102039 .
null
毕瑞君, 程志刚, 2022.三江源冬季降雪时空特征及成因分析[J].成都信息工程大学学报37(3): 318-324.DOI: 10.16836/j.cnki.jcuit.2022.03.012.Bi R J
null
Chen Z G2022.The snowfall characteristics and cause of formation in winter of Three-River Headwaters Region[J].Journal of Chengdu University of Information Technology37(3): 318-324.DOI: 10.16836/j.cnki.jcuit.2022.03.012 .
null
蔡永祥, 罗少辉, 王军, 等, 2022.三江源地区1961-2019年降水量时空变化特征[J].草业科学39(1): 10-20.DOI: 10.11829/j.issn.1001-0629.2021-0376.Cai Y X
null
Luo S H Wang J, et al, 2022.Spatiotemporal variations in precipitation in the Three-River Headwater region from 1961 to 2019[J].Pratacultural Science39(1): 10-20.DOI: 10.11829/j.issn.1001-0629.2021-0376 .
null
曹晓云, 肖建设, 郝晓华, 等, 2022.2001-2020年三江源地区积雪日数变化及地形分异[J].干旱区地理45(5): 1370-1380.DOI: 10.12118/j.issn.1000-6060.2021.59.Cao X Y
null
Xiao J S, et al, 2022.Variation of snow cover days and topographic differentiation in Sanjiangyuan area from 2001 to 2020[J].Arid Land Geography45(5): 1370-1380.DOI: 10.12118/j.issn.1000-6060.2021.59 .
null
陈龙飞, 张万昌, 高会然, 2022.三江源地区1980-2019年积雪时空动态特征及其对气候变化的响应[J].冰川冻土44(1): 133-146.DOI: 10.7522/j.issn.1000-0240.2022.0025.Chen L F
null
Zhang W C Gao H R2022.Spatiotemporal dynamic characteristics of snow cover from 1980 to 2019 in the Three-River-Source region and its response to climate change[J].Journal of Glaciology and Geocryology44(1): 133-146.DOI: 10.7522/j.issn.1000-0240.2022.0025 .
null
段亚雯, 朱克云, 马柱国, 等, 2014.中国区域1961~2010年降水集中指数(PCI)的变化及月分配特征[J].大气科学38(6): 1124-1136.DOI: 10.3878/j.issn.1006-9895.1401.13267.Duan Y W
null
Zhu K Y Ma Z G, et al, 2014.Characteristics of precipitation concentration index (PCI) variations and monthly distribution of annual precipitation in China[J].Chinese Journal of Atmospheric Sciences38(6): 1124-1136.DOI: 10.3878/j.issn.1006-9895.1401.13267 .
null
高颖会, 顾斌贤, 柳一玲, 等, 2021.山东省降水集中程度及其与旱涝的关系[J].水电能源科学39(1): 18-21.
null
Gao Y H Gu B X Liu Y L, et al, 2021.Precipitation concentration degree and its relationship with drought and flood in Shandong Province[J].Water Resources and Power39(1): 18-21.
null
韩会庆, 李建鸿, 白玉梅, 等, 2020.贵州省主要粮食作物不同生长期的降水集中度时空演变[J].节水灌溉(1): 66-72.DOI: 10.3969/j.issn.1007-4929.2020.01.015.Han H Q
null
Li J H Bai Y M, et al, 2020.Temporal and spatial changes of precipitation concentration degree at different growth stages of major grain crops in Guizhou Province[J].Water Saving Irrigation(1): 66-72.DOI: 10.3969/j.issn.1007-4929.2020.01.015 .
null
靳铮, 游庆龙, 吴芳营, 等, 2020.青藏高原三江源地区近60 a气候与极端气候变化特征分析[J].大气科学学报43(6): 1042-1055.DOI: 10.13878/j.cnki.dqkxxb.20201008001.Jin Z
null
You Q L Wu F Y, et al, 2020.Changes of climate and climate extremes in the Three-Rivers Headwaters’ Region over the Tibetan Plateau during the past 60 years[J].Transactions of Atmospheric Sciences43(6): 1042-1055.DOI: 10.13878/j.cnki.dqkxxb.20201008001 .
null
黎晓东, 王永强, 刘万, 等, 2022.三江源典型地区1967-2019年降水时空演变特征[J].长江科学院院报39(1): 16-22.DOI: 10.11988/ckyyb.20200971.Li X D
null
Wang Y Q Liu W, et al, 2022.Temporal and spatial evolution characteristics of precipitation in typical regions of the headwaters of three rivers from 1967 to 2019[J].Journal of Yangtze River Scientific Research Institute39(1): 16-22.DOI: 10.11988/ckyyb.20200971 .
null
李红梅, 颜亮东, 温婷婷, 等, 2022.三江源地区气候变化特征及其影响评估[J].高原气象41(2): 306-316.DOI: 10.7522/j.issn.1000-0534.2021.00101.Li H M
null
Yan D L Wen T T, et al, 2022.Characteristics of climate change and its impact assessment in the Three-River Regions[J].Plateau Meteorology41(2): 306-316.DOI: 10.7522/j.issn.1000-0534.2021.00101 .
null
刘晓琼, 吴泽洲, 刘彦随, 等, 2019.1960-2015年青海三江源地区降水时空特征[J].地理学报74(9): 1803-1820.DOI: 10.11821/dlxb201909008.Liu X Q
null
Wu Z Z Liu Y S, et al, 2019.Spatial-temporal characteristics of precipitation from 1960 to 2015 in the Three Rivers’ Headstream Region, Qinghai, China[J].Acta Geographica Sinica74(9): 1803-1820.DOI: 10.11821/dlxb201909008 .
null
刘义花, 李红梅, 申红艳, 等, 2022.三江源地区降雪量演变特征及其对径流的影响[J].高原气象41(2): 420-429.DOI: 10.7522/j.issn.1000-0534.2021.00096.Liu Y H
null
Li H M Shen H Y, et al, 2022.The variation characteristics of snowfall and its influence on runoff in Three Rivers-Source Region[J].Plateau Meteorology41(2): 420-429.DOI: 10.7522/j.issn.1000-0534.2021.00096 .
null
刘颖, 2019.近45年来三江源区降水量变化趋势及其突变研究[J].西藏科技 (11): 34-41.Liu Y, 2019.Study on the trends and abrupt changes of precipitation in the Three-River Source Region over the past 45 years[J].Tibet's Science & Technology (11): 34-41.
null
孟宪红, 陈昊, 李照国, 等, 2020.三江源区气候变化及其环境影响研究综述[J].高原气象39(6): 1133-1143.DOI: 10.7522/j.issn.1000-0534.2019.00144.Meng X H
null
Chen H Li Z G, et al, 2020.Review of climate change and its environmental influence on the Three-River Regions[J].Plateau Meteorology39(6): 1133-1143.DOI: 10.7522/j.issn.1000-0534.2019.00144 .
null
史艳姝, 李军, 谈建国, 等, 2021.上海地区单季晚稻生长期降水量对产量的影响及产量预估[J].气候与环境研究26(5): 583-590.DOI: 10.3878/j.issn.1006-9585.2021.21041.Shi Y S
null
Li J Tan J G, et al, 2021.Effect of growing season precipitation on yield of single cropping late rice in Shanghai and yield estimation[J].Climatic and Environmental Research26(5): 583-590.DOI: 10.3878/j.issn.1006-9585.2021.21041 .
null
唐红玉, 杨小丹, 王希娟, 等, 2007.三江源地区近50年降水变化分析[J].高原气象26(1): 8.Tang H Y, Yang X D, Wang X J, et al, 2007.Analyses of precipitation change in the source regions of Three Rivers during 1956-2004[J].Plateau Meteorology, 26(1): 8.
null
王美月, 王磊, 李谢辉, 等, 2022.三江源地区暴雨的水汽输送源地及路径研究[J].高原气象41(1): 68-78.DOI: 10.7522/j.issn.1000-0534.2020.00097.Wang M Y
null
Wang L Li X H, et al, 2022.Study on water vapor transport source and path of rainstorm in Sanjiangyuan area[J].Plateau Meteorology41(1): 68-78.DOI: 10.7522/j.issn.1000-0534.2020.00097 .
null
王晓钰, 鲁帆, 朱奎, 等, 2022.不同遥感降水产品多时间尺度的比较研究——以三江源地区为例[J].中国农村水利水电, (7): 132-139.Wang X Y, Lu F, Zhu K, et al, 2022.A comparative study of the multiple time scales of different remote sensing precipitation products: taking the Three-River source region as an example[J].China Rural Water and Hydropower, (7): 132-139.
null
吴佳, 高学杰, 2013.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报56(4): 1102-1111.DOI: 10.6038/cjg20130406.Wu J
null
Gao X J2013.A gridded daily observation dataset over China region and comparison with the other datasets[J].Chinese Journal of Geophysics56(4): 1102-1111.DOI: 10.6038/cjg20130406 .
null
杨佳星, 樊雨鑫, 2019.52年来三江源区气候变化及其环境效应分析[J].青海环境29(4): 169-175.DOI: 10.3969/j.issn.1007-2454.2019.04.006.DOI: 10.3969/j.issn.1007-2454.2019.04.006.Yang J X
null
Fan Y X2019.Analysis of climate change and its environmental effects in the Three-River Source Region over 52 years[J].Journal of Qinghai Environment29(4): 169-175.DOI: 10.3969/j.issn.1007-2454.2019.04.006 .
null
杨显玉, 吕雅琼, 文军, 等, 2022.三江源区域夏季降水异常的水汽输送及源地特征的研究[J].高原气象41(2): 465-476.DOI: 10.7522/j.issn.1000-0534.2022.00015.Yang X Y
null
Lu Y Q Wen J, et al, 2022.The characteristics of water vapor transport and potential sources of the abnormal summer rainfall in Sanjiangyuan region[J].Plateau Meteorology41(2): 465-476.DOI: 10.7522/j.issn.1000-0534.2022.00015 .
null
姚秀萍, 谢启玉, 黄逸飞, 2022.中国三江源地区降水研究的进展与展望[J].大气科学学报45(5): 688-699.DOI: 10.13878/j.cnki.dqkxxb.20211220001.Yao X P
null
Xie Q Y Huang Y F2022.Advances and prospects on the study of precipitation in the Three-River-Source Region in China[J].Transactions of Atmospheric Sciences45(5): 688-699.DOI: 10.13878/j.cnki.dqkxxb.20211220001 .
null
张青, 陈丹, 唐忠涛, 等, 2022.1961~2020年三江源地区候降水变化特征分析[J].青海草业31(1): 46-52.DOI: 10.3969/j.issn.1008-1445.2022.01.011.Zhang Q
null
Chen D Tang Z T, et al, 2022.Analysis of rainfall change characteristics in the source area of the Sanjiangriver from 1961 to 2020[J].Qinghai Prataculture31(1): 46-52.DOI: 10.3969/j.issn.1008-1445.2022.01.011 .
null
张岩, 张建军, 张艳得, 等, 2017.三江源区径流长期变化趋势对降水响应的空间差异[J].环境科学研究30(1): 40-50.DOI: 10.13198/j.issn.1001-6929.2017.01.08.Zhang Y
null
Zhang J J Zhang Y D, et al, 2017.Spatial variation of long-term runoff trends and response to precipitation change in the Three-River Headwaters Region[J]. Research of Environmental Sciences30(1): 40-50.DOI: 10.13198/j.issn.1001-6929.2017.01.08 .
null
张宇, 李铁键, 李家叶, 等, 2019.西风带和南亚季风对三江源雨季水汽输送及降水的影响[J].水科学进展30(3): 348-358.DOI: 10.14042/j.cnki.32.1309.2019.03.005.Zhang Y
null
Li T J Li J Y, et al, 2019.Influence of the westerlies and the South Asia monsoon on water vapor transport and precipitation in the Three-River Headwaters Region during the rainy season[J].Advances in Water Science30(3): 348-358.DOI: 10.14042/j.cnki.32.1309.2019.03.005 .
null
赵志平, 关潇, 李果, 等, 2017.近45 年来青海三江源区干湿变化的趋势分析[J].干旱区资源与环境31(4): 148-153.DOI: 10.13448/j.cnki.jalre.2017.125.Zhao Z P
null
Guan X Li G, et al, 2017.Trend analysis of climatic change in the Three River Headwater Region in Qinghai Province during last 45 years[J].Journal of Arid Land Resources and Environment31(4): 148-153.DOI: 10.13448/j.cnki.jalre.2017.125 .
null
周斌, 刘佳, 秦宁生, 等, 2021.1961-2019年大渡河流域降水集中度、 集中期特征及径流响应研究[J].气象与环境科学44(1): 56-64.DOI: 10.16765/j.cnki.1673-7148.2021.01.007.Zhou B
null
Liu J Qing N S, et al, 2021.Characteristics of precipitation concentration degree, precipitation concentration period and runoff response in the Dadu River basin during 1961-2019[J].Meteorological and Environmental Sciences44(1): 56-64.DOI: 10.16765/j.cnki.1673-7148.2021.01.007 .
文章导航

/