青藏高原晴天光合有效辐射光谱观测研究
收稿日期: 2023-12-06
修回日期: 2024-04-19
网络出版日期: 2024-04-19
基金资助
国家自然科学基金项目(41867041); 西藏大学“太阳能创新团队与实验平台建设”项目
Spectral Observation of Solar Photosynthetically Active Radiation on Clear Days in Qinghai-Xizang Plateau
Received date: 2023-12-06
Revised date: 2024-04-19
Online published: 2024-04-19
光合有效辐射 (Photosynthetically Active Radiation, PAR) 光谱是可见光中植物敏感波段, 可被植物吸收用于光合作用。地面PAR光谱的特征直接影响植物的生长发育、 形态、 生理代谢、 产量和适应能力等。为了进一步认识PAR在西藏高海拔地区分布特征, 本文利用了国际高精度太阳光谱仪在2021 - 2022年期间对青藏高原珠峰、 日喀则、 拉萨和林芝地区晴天PAR光谱特征进行了实地观测。观测发现, 青藏高原冬至和夏至期间PAR变化幅度较大, 珠峰PAR单色辐射照度峰值夏至[1251 mW·(m2·nm)-1] -冬至[1935 mW·(m2·nm)-1]浮动差异高达684 mW·(m2·nm)-1, 冬至珠峰PAR光谱积分值(309.86 W·m-2)比AM0标准光谱PAR积分值(530.67 W·m-2)低41.61%, 比AM1.5标准光谱PAR积分值(429.83 W·m-2)低28%; 夏至西藏珠峰、 日喀则、 拉萨当日正午时刻PAR光谱均超过AM1.5标准光谱, 且接近AM0标准光谱。西藏日喀则春分和秋分晴天当地正午PAR光谱峰值分别为1699 mW·(m2·nm)-1和1696 mW·(m2·nm)-1, 峰值基本相同, 春分和秋分在西藏高原同一个观测点, 由于其当地正午太阳高度角相同(如: 日喀则均为59.84弧度), 在其他影响光谱的因子相同的情况下PAR光谱特征基本相同。对比青藏高原与低海拔北京、 安徽六安和河南濮阳地区的观测结果发现: 冬至附近晴天(2021年11月20日), 高海拔珠峰地区PAR光谱积分值(309.86 W·m-2)比低海拔安徽六安地区PAR积分值(264.4 W·m-2)高17.19%; 夏至附近晴天(2021年6月3日), 高海拔珠峰地区PAR光谱积分值(487.41 W·m-2)比低海拔北京地区PAR光谱积分值(394.15 W·m-2)高23.66%; 秋分附近晴天(2021年9月19日), 低海拔北京PAR光谱积分值(315.23 W·m-2)仅占高海拔珠峰地区PAR光谱积分值(442.49 W·m-2)的71.24%; 春分附近晴天(2021年3月19日), 高海拔日喀则地区PAR光谱积分值(413.34 W·m-2)比低海拔河南濮阳地区PAR光谱积分值(261.82 W·m-2)高64.75%。结果表明PAR光谱积分值与海拔正相关, 海拔越高, 积分值越大。此外, 通过全年晴天PAR光谱的观测结果发现光谱辐射照度在时间上存在一定的时序变化特征。具体表现为冬至光谱辐射照度最低, 随后光谱辐射照度逐日升高, 次年经过春分在夏至达到最高值, 夏至后光谱辐射照度逐日降低, 经过秋分在冬至再次达到最低值, 且春分与秋分光谱辐射照度特征基本相同。
盛敏 , 措加旺姆 , 王萌萌 , 周毅 , 普多旺 , 拉瓜登顿 , 诺桑 . 青藏高原晴天光合有效辐射光谱观测研究[J]. 高原气象, 2025 , 44(1) : 46 -55 . DOI: 10.7522/j.issn.1000-0534.2024.00062
Photosynthetically Active Radiation (PAR) spectrum, in visible light, is the wavelength range sensitive to plants and can be absorbed by them for photosynthesis.The characteristics of ground PAR spectrum directly affect the growth, development, morphology, physiological metabolism, yield, and adaptability of plants.In order to further understand the distribution characteristics of PAR in high-altitude areas of Xizang, this study utilized the International High-Precision Solar Spectroradiometer to conduct field observations of the PAR spectrum characteristics in the Mt.Everest, Shigatse, Lhasa, and Nyingchi regions of the Qinghai-Xizang Plateau from 2021 to 2022.The observations found that during the winter and summer solstices on the Qinghai-Xizang Plateau, the variation in PAR was significant.The peak monochromatic radiation illuminance of PAR at Mt.Everest during the summer solstice [1251 mW·(m2·nm)-1] to the winter solstice [1935 mW·(m2·nm)-1] fluctuated by up to 684 mW·(m2·nm)-1.The winter solstice integrated value of PAR spectrum at Mt.Everest (309.86 W·m-2) was 41.61% lower than the AM0 standard spectrum integrated value of PAR (530.67 W·m-2), and 28% lower than the AM1.5 standard spectrum integrated value of PAR (429.83 W·m-2).During the summer solstice, the PAR spectra at Mt.Everest, Shigatse, and Lhasa in Xizang all exceeded the AM1.5 standard spectrum at noon and were close to the AM0 standard spectrum.In Shigatse, Xizang, during the spring equinox and autumn equinox, the peak PAR spectra were 1699 mW·(m2·nm)-1 and 1696 mW·(m2·nm)-1 respectively, with peak values being nearly identical.This similarity is due to the same local solar altitude angle at noon (e.g., 59.84 radians in Shigatse) during the equinoxes at the same observation point on the Tibetan Plateau, assuming other factors affecting the spectrum are the same.Comparison of observations between the Qinghai-Xizang Plateau and low-altitude areas such as Beijing, Anhui's Lu'an, and Henan's Puyang revealed that on a clear day near the winter solstice (November 20, 2021), the integrated value of PAR spectrum at high-altitude Mt.Everest (309.86 W·m-2 was 17.19% higher than that in low-altitude Lu'an, Anhui (264.41 W·m-2); on a clear day near the summer solstice (June 3, 2021), the integrated value of PAR spectrum at high-altitude Mt.Everest (487.41 W·m-2) was 23.66% higher than that in low-altitude Beijing (394.15 W·m-2); near the autumn equinox (September 19, 2021), the integrated value of PAR spectrum in low-altitude Beijing (315.23 W·m-2) was only 71.24% of that at high-altitude Mt.Everest (442.49 W·m-2); near the spring equinox (March 19, 2021), the integrated value of PAR spectrum in high-altitude Shigatse (413.34 W·m-2) was 64.75% higher than that in low-altitude Puyang, Henan (261.82 W·m-2).The results indicate that the integrated value of PAR spectrum is positively correlated with altitude, with higher altitudes corresponding to larger integrated values.Additionally, through observations of PAR spectra on clear days throughout the year, it was found that there are certain temporal variations in spectral radiation illuminance.Specifically, the spectral radiation illuminance is lowest at the winter solstice, then increases daily until reaching its peak the following year after the spring equinox, decreases daily after the summer solstice, reaches its lowest point again at the winter solstice after the autumn equinox, with the spectral radiation illuminance characteristics being basically the same during the spring equinox and autumn equinox.
Key words: Xizang; plateau; clear days; photosynthetically active radiation; observation
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 白建辉, 2010.光合有效辐射在大气中的衰减[J].环境科学学报, 30(2), 302-313. |
null | |
null | 郭仕侗, 韦志刚, 王欢, 2023.珠海凤凰山常绿阔叶林CO2通量与 光合有效辐射及气象因子的关系[J].高原气象, 42(3): 795-808.DOI: 10.7522/j.issn.1000-0534.2022.00051.Guo S T , |
null | |
null | 黄芳芳, 马伟强, 王遂缠, 等, 2024.基于CE-318观测的甘肃省气溶胶光学特性分析[J].高原气象, 43(1): 241-253.DOI: 10.7522/j.issn.1000-0534.2023.00030.Huang F F , |
null | |
null | 江灏, 1993.HEIFE绿洲区太阳总辐射和地表反射率的分光谱特征[J].高原气象, 12(2): 156-161. |
null | |
null | 李韧, 季国良, 杨文, 等, 2007.青藏高原北部光合有效辐射的观测研究[J].太阳能学报, 28(3): 241-247.DOI: 10.3321/j.issn: 0254-0096.2007.03.003.Ji R , |
null | |
null | 刘淳, 任立清, 李学军, 等, 2021.1990 -2019年中国北方沙区太阳能资源评估[J].高原气象, 40(5): 1213-1223.DOI: 10.7522/j.issn.1000-0534.2021.00058.Liu C , |
null | |
null | 刘娟, 措加旺姆, 诺桑, 等, 2020.西藏晴天太阳红斑紫外线观测研究[J].光学学报, 40(19): 27-35. |
null | |
null | 牛瑞佳, 文莉娟, 王梦晓, 等, 2023.积雪和沙尘对冰封期青海湖辐射和温度的影响[J].高原气象, 42(4): 913-922.DOI: 10.7522/j.issn.1000-0534.2023.00021.Niu R J , |
null | |
null | 普多旺, 拉瓜登顿, 盛敏, 等, 2023.中国北纬30°地面太阳光谱观测[J].光谱学与光谱分析, 43(6): 1881-1887. |
null | |
null | 王倩, 拉瓜登顿, 普多旺, 等, 2022.拉萨和北京太阳光谱观测研究[J].科技传播, 14(9): 146-149.DOI: 10.16607/j.cnki.1674-6708.2022.09.044.Wang Q , |
null | |
null | 王树舟, 马耀明, 吴文玉, 2023.基于Noah-MP陆面模式的青藏高原地表感热和潜热通量分布及变化特征[J].高原气象, 42(1): 25-34.DOI: 10.7522/j.issn.1000-0534.2022.00036.Wang S Z , |
null | |
null | 余晓雨, 贾绍凤, 朱文彬, 2022.青海省地表净辐射通量的遥感估算方法及时空特征分析[J].高原气象, 41(4): 921-933.DOI: 10.7522/j.issn.1000-0534.2021.00033.Yu X Y , |
null | |
null | 张强, 文军, 武月月, 等, 2022.雅鲁藏布大峡谷地区近地面-大气间水热交换特征分析[J].高原气象, 41(1): 153-166.DOI: 10.7522/j.issn.1000-0534.2021.00113.Zhang Q , |
null | |
null | 赵地, 诺桑, 措加旺姆, 等, 2018.西藏拉萨地区太阳紫外辐射观测[J].大气与环境光学学报, 13(2): 81-87. |
null | |
null | 周成波, 张旭, 崔青青, 等, 2017.LED补光光质对小白菜生长及光合作用的影响[J].植物生理学报, 53(6): 1030-1038. |
null | |
null | 周毅, 诺桑, 王倩, 等, 2021.西藏阿里地表面太阳光谱观测[J].地球环境学报, 12(5): 549-557. |
null |
/
〈 |
|
〉 |