收稿日期: 2023-09-08
修回日期: 2024-03-01
网络出版日期: 2024-03-01
基金资助
国家重点研发计划项目(2021YFB3901405); 中国气象局风云应用先行计划项目(FY-APP-0.0306); 重庆市气象部门业务技术攻关项目(YWJSGG-202313)
An Integrated Remote Sensing Drought Monitoring Model Based on Multi-source Information
Received date: 2023-09-08
Revised date: 2024-03-01
Online published: 2024-03-01
为解决传统遥感干旱指数侧重于对单一响应因子的监测, 缺乏对干旱综合评估的问题, 本文结合气象观测资料和多源遥感数据, 择优选择TVDI、 RVI、 PDI和GVMI日产品数据作为自变量, 与卫星过境相邻时刻气象观测资料计算的MCI指数为因变量, 采用随机森林回归算法(Random Forest Regression, RFR)构建综合遥感干旱监测模型。结果表明: 与传统最小二乘法模型(Ordinary Least Squares, OLS)相比, RFR模型训练集和测试集精度均优于OLS模型。RFR训练集R值为0.97, RMSE为0.33, 测试集R值为0.90, RMSE为0.53; OLS模型训练集R值为0.78, RMSE值为0.73, 测试R值为0.76, RMSE值为0.79, 表明RFR模型在表征区域旱情时比OLS模型更加优秀。在2022年西南地区旱情监测评估中, RFR遥感干旱监测结果与MCI指数时空分布较为一致, 能较好地表征区域旱情的时空动态变化特征, 体现了RFR模型在实际干旱监测过程中的实用性。但RFR干旱监测精度与区域站点个数和站点空间分布有关, 在站点个数较多, 站点分布均匀的区域, RFR干旱监测模型精度较高。
张德军 , 宏观 , 杨世琦 , 祝好 . 基于多源信息的遥感综合干旱监测模型[J]. 高原气象, 2024 , 43(6) : 1507 -1519 . DOI: 10.7522/j.issn.1000-0534.2024.00025
In order to solve the problem of the traditional remote sensing drought index focuses on the monitoring of a single response factor and lacks a complete analysis of drought.In this paper, we selected TVDI, RVI, PDI, and GVMI daily products estimated from remote sensing data as independent variables, and MCI calculated from meteorological data at the adjacent moments of satellite transit as dependent variables, and uses the Random Forest Regression (RFR) model to construct a integrated remote sensing drought monitoring model.The results show that the accuracy of RFR model is better than that of the Ordinary Least Squares (OLS) model in bothtraining data and test data.The R value of the RFR training data is 0.97, the RMSE is 0.33, the R value of the RFR test data is 0.90, and the RMSE is 0.53.The R value of the OLS training data is 0.78, the RMSE value is 0.73, the R value of the OLS test data is 0.76, and the RMSE value is 0.79.The comparisons of RFR and OLS model in R and RMSE show that the RFR model is superior than the OLS model in the characterization of regional drought.In the application of drought monitoring in Southwest China in 2022, the RFR results are consistent with the spatiotemporal distribution of the MCI index, which can better characterize the spatial and temporal dynamics of the regional drought, reflecting the practicality of the RFR model in the actual drought monitoring process.However, the accuracy of RFR model is related to the number of regional stations and the spatial distribution of stations, and the accuracy of the RFR model is higher in areas with a large number of stations and uniform distribution of stations.
Key words: drought; remote sensing; random forest regression; ordinary least squares
null | |
null | GB/T 20481-2017.气象干旱等级 [S].北京, 中国标准出版社, 2018. |
null | GB/T 20481-2017.Grades of meteorological drought [S].Beijing, Standards Press of China, 2018. |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈国茜, 周秉荣, 胡爱军, 2014.垂直干旱指数在高寒农区春旱监测中的应用研究[J].遥感技术和与应用, 29(6): 949-953.DOI: 10.11873/j.issn.1004-0323.2014.6.0949.Chen G X , |
null | |
null | 董婷, 孟令奎, 张文, 2015.MODIS短波红外水分胁迫指数及其在农业干旱监测中的适用性分析[J].遥感学报, 19(2): 319-327.DOI: 10.11834/jrs.20153355.Dong T , |
null | |
null | 杜灵通, 田庆久, 王磊, 等, 2014.基于多源遥感数据的综合干旱监测模型构建[J].农业工程学报, 30(9): 126-132.DOI: 10.3969/j.issn.1002-6819.2014.09.016.Du L T , |
null | |
null | 郭浩, 古丽·加帕尔, 包安明, 等, 2017.基于改进型垂直干旱指数的塔里木河流域绿洲与荒漠区干旱时空变化对比[J].中国沙漠, 37(4): 775-783.DOI: 10.7522/j.issn.1000-694X.2016.00057.Guo H , |
null | |
null | 黄友昕, 刘修国, 沈永林, 等, 2015.农业干旱遥感监测指标及其适应性评价方法研究进展[J].农业工程学报, 31(16): 186-195.DOI: 10.11975/j.issn.1002-6819.2015.16.025.Huang Y X , |
null | |
null | 贾何佳, 李谢辉, 王磊, 等, 2022.基于机器学习的西南地区遥感干旱监测与评估[J].高原气象, 41(6): 1572-1582.DOI: 10.7522/j.issn.1000-0534.2022.00006.Jia H J , |
null | |
null | 江笑薇, 白建军, 刘宪锋, 2019.基于多源信息的综合干旱监测研究进展与展望[J].地球科学进展, 34(3): 275-287.DOI: 10.11867/j.issn.1001-8166.2019.03.0275.Jiang X W , |
null | |
null | 李梦云, 黄方, 2016.基于SPOT-VGT可见光/短波红外波段数据对AMSR-E土壤湿度的降尺度研究[J].遥感技术与应用, 31(2): 342-348. |
null | |
null | 刘二华, 周广胜, 周莉, 等, 2020.夏玉米不同生育期叶片和冠层含水量的遥感反演[J].应用气象学报, 31(1): 52-62.DOI: 10.11898/1001-7313.202001005.Liu E H , |
null | |
null | 刘元亮, 李艳, 吴剑亮, 2015.基于LSWI和NDVI时间序列的水田信息提取研究[J].地理与地理信息科学, 31(3): 32-37.DOI: 10.3969/j.issn.1672-0504.2015.03.007.Li Y L , |
null | |
null | 米前川, 高西宁, 李玥, 等, 2022.深度学习方法在干旱预测中的应用[J].应用气象学报, 33(1): 104-114.DOI: 10.11898/1001-7313.20220109.Mi Q C , |
null | |
null | 沈润平, 郭佳, 张婧娴, 等, 2016.基于随机森林的遥感干旱监测模型的构建[J].地球信息科学学报, 19(1): 125-133.DOI: 10.3724/SP.J.1047.2017.00125.Shen R P , |
null | |
null | 宋艳玲, 王建林, 田靳峰, 等, 2019.气象干旱指数在东北春玉米干旱监测中的改进[J].应用气象学报, 30(1): 25-34.DOI: 10.11898/1001-7313.20190103.Song Y L , |
null | |
null | 宋扬, 房世波, 梁瀚月, 等, 2017.基于MODIS数据的农业干旱遥感指数对比和应用[J].国土资源遥感, 29(2): 215-220.DOI: 10.6046/gtzyyg.2017.02.31.Song Y , |
null | |
null | 孙灏, 陈云浩, 孙洪泉, 2012.典型农业干旱遥感监测指数的比较及分类体系[J].农业工程学报, 28(14): 147-154.DOI: 10.3969/j.issn.1002-6819.2012.14.023.Sun H , |
null | |
null | 孙兴亮, 郝晓华, 王建, 等, 2022.基于光谱-环境随机森林回归模型的MODIS积雪面积比例反演研究[J].冰川冻土, 44(1): 147-158.DOI: 10.7522/j.issn.1000-0240.2022.0026.Sun X L , |
null | |
null | 孙昭萱, 张强, 孙蕊, 等, 2022.2022年西南地区极端高温干旱特征及其主要影响[J].干旱气象, 40(5): 764-770.DOI: 10.11755/j.issn.1006-7639(2022)-05-0764.Sun Z X , |
null | |
null | 王瑾, 陈书涛, 丁司丞, 等, 2022.大豆叶片呼吸与植被指数和叶片性状的关系[J].光谱学与光谱分析, 42(5): 1607-1613.DOI: 10.3964/j.issn.1000-0593(2022)05-1607-07.Wang J , |
null | |
null | 王蕾, 王鹏新, 李俐, 等, 2018.应用条件植被温度指数预测县域尺度小麦单产[J].武汉大学学报(信息科学版), 43(10): 1566-1573.DOI: 10.13203/j.whugis20160391.Wang L , |
null | |
null | 王溥, 武建军, 聂建亮, 等, 2010.不同植被水分指数对小麦水分状况监测效果对比[J].国土资源遥感, 85(3): 97-100.DOI: 10.6046/gtzyyg.2010.03.20.Wang P , |
null | |
null | 王天, 涂新军, 周宗林, 等, 2022.基于CMIP6的珠江流域未来干旱时空变化[J].农业工程学报, 38(11): 81-90.DOI: 10.11975/j.issn.1002-6819.2022.11.009.Wang T , |
null | |
null | 王兴, 陈鲜艳, 张强, 等, 2023.利用短序列区域站资料计算干旱指数SPI的应用研究[J].高原气象, 42(5): 1325-1337.DOI: 10.7522/j.issn.1000-0534.2022.00082.Wang X , |
null | |
null | 温庆志, 孙鹏, 张强, 等, 2019.基于多源遥感数据的农业干旱监测模型构建及应用[J].生态学报, 39(20): 7757-7770.DOI: 10.5846/stxb201711202068.Wen Q Z , |
null | |
null | 吴天晓, 李宝富, 郭浩, 等, 2023.基于优选遥感干旱指数的华北平原干旱时空变化特征分析[J].生态学报, 43(4): 1621-1634.DOI: 10.5846/stxb202110122864.Wu T X , |
null | |
null | 谢五三, 张强, 李威, 等, 2021.干旱指数在中国东北、 西南和长江中下游地区适用性分析[J].高原气象, 40(5): 1136-1146.DOI: 10.7522/j.issn.1000-0534.2020.00102.Xie W S , |
null | |
null | 杨歆雨, 张容焱, 潘航, 等, 2022.福建省多维度气象干旱特征时空分布分析[J].气象, 48(12): 1565-1576.DOI: 10.7519/j.issn.1000-0526.2022.072101.Yang X Y , |
null | |
null | 尹国应, 张洪艳, 张良培, 2022.2001-2019年长江中下游农业干旱遥感监测及植被敏感性分析[J].武汉大学学报(信息科学版), 47(8): 1245-1256.DOI: 10.13203/j.whugis20210172.Yin G Y , |
null | |
null | 玉院和, 王金亮, 李晓鹏, 2018.基于MODIS数据的滇中地区干旱监测[J].灌溉排水学报, 37(11): 91-98.DOI: 10.13522/j.cnki.ggps.20180097.Yu Y H , |
null | |
null | 张瑾, 王斌, 白建军, 2022.基于植被状态指数的甘肃省2000-2019年干旱时空特征分析[J].水土保持研究, 29(6): 167-173.DOI: 10.13869/j.cnki.rswc.2022.06.007.Zhang J , |
null | |
null | 张强, 邹旭恺, 陈鲜艳, 等, 2022.考虑多尺度和蒸散影响的新干旱指数研究—以云南为例[J].高原气象, 41(4): 909-920.DOI: 10.7522/j.issn.1000-0534.2021.00026.Zhang Q , |
null | |
null | |
null | |
null | 朱琳, 秦其明, 王金梁, 等, 2011.短波红外垂直失水指数观测误差估计方法及其同化方案[J].红外与毫米波学报, 30(6): 526-536. |
null |
/
〈 |
|
〉 |