CMIP6对中国东部夏季降水年代际变化的模拟能力评估

  • 郑帅 ,
  • 孙博 ,
  • 李万玲 ,
  • 薛茹帆
展开
  • 南京信息工程大学大气科学学院,江苏 南京 210044

郑帅(2002 -), 男, 江苏南京人, 本科生, 主要从事气候动力学研究. E-mail:

收稿日期: 2023-10-19

  修回日期: 2024-03-01

  网络出版日期: 2024-03-01

基金资助

国家自然科学基金气候系统预测基础科学中心项目(42088101)

Performance Evaluation of CMIP6 Models in Simulating the Interdecadal Variations of Summer Precipitation in Eastern China

  • Shuai ZHENG ,
  • Bo SUN ,
  • Wanling LI ,
  • Rufan XUE
Expand
  • Institute of Atmospheric Sciences,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China

Received date: 2023-10-19

  Revised date: 2024-03-01

  Online published: 2024-03-01

摘要

中国东部夏季降水具有显著的年代际变化特征, 其年代际变化会对中国东部旱涝情况以及人民生产生活造成重大影响, 因此了解及预测中国东部夏季降水的年代际变化尤为重要。第六次国际间耦合模式比较计划(Coupled Model Intercomparison Project Phase 6, CMIP6)能够再现出不同尺度的气候要素, 能够帮助人们更好地认识气候要素的变化特征及预测气候要素在未来的变化。那么CMIP6对中国东部夏季降水年代际变化的模拟能力是怎样的?模拟结果较好或较差的原因是什么?面向上述问题, 本文运用CN05.1降水观测资料、 ERA5再分析资料、 NOAA海温资料以及30家CMIP6模式历史试验数据评估了CMIP6对1961 -2014年中国东部夏季降水年代际变化的模拟能力。1961 -2014年中国东部夏季降水发生了两次年代际变化, 分别发生于20世纪70年代中期、 90年代初, 21世纪后由于西太平洋副热带高压、 南亚高压、 热带海温等气候要素年代际变率的减弱, 年代际变化特征并不明显。中国东部夏季降水年代际变化的物理机制与西太平洋副热带高压、 南亚高压、 热带海温的协同作用有显著的相关关系。在发生于20世纪70年代中期及90年代初的年代际变化中, 西太平洋副热带高压和南亚高压同时加强或减弱, 且热带太平洋多个海域的海表温度在上述两次年代际变化前后发生了显著的变化, 上述变化引起了长江以南地区(18°N -30°N, 105°E -122°E) 850 hPa及200 hPa风场及散度场的变化, 从而导致长江以南地区水汽输送、 经向环流以及大气低层稳定度的变化, 进而导致长江以南地区降水的年代际变化。选用的30家CMIP6模式虽然能较好地模拟出1961 -2014年中国东部夏季降水的气候态, 但仅有5家CMIP6模式能够较好地模拟发生于20世纪70年代中期及90年代初的两次年代际变化, 取得了0.7及以上的泰勒评分, 其余模式对降水年代际变化的模拟能力较弱。此外, 优选模式集合平均对发生于20世纪70年代中期及90年代初的两次年代际变化的模拟结果显著优于模式单独模拟结果, 这是因为优选模式集合平均能够较好地模拟出上述两次降水年代际变化前后西太副高、 南亚高压的同时增强或减弱以及部分热带太平洋海区的海温变化, 进而较好地模拟出了我国东部经向环流的变化, 最终能够较好地模拟我国长江以南地区夏季降水的空间变化特征。

本文引用格式

郑帅 , 孙博 , 李万玲 , 薛茹帆 . CMIP6对中国东部夏季降水年代际变化的模拟能力评估[J]. 高原气象, 2024 , 43(6) : 1448 -1461 . DOI: 10.7522/j.issn.1000-0534.2024.00027

Abstract

The summer precipitation in eastern China has significant interdecadal variaitons, which can impact the spatiotemporal variability of drought and floods as well as people’s living.Hence, it is important to understand and predict the interdecadal variations of summer precipitation in eastern China.The Coupled Model Intercomparison Project Phase 6(CMIP6) can help to understand the changes in climatic factors and predict their future changes.What is the capability of CMIP6 models in simulating the interdecadal variations of summer precipitation in eastern China? What are the potential reasons? In order to understand the above questions, this study evaluated the capability of CMIP6 models in simulating the interdecadal variations of summer precipitation in eastern China, using the CN05.1 observational data, ERA5 reanalysis data, NOAA sea surface temperature (SST) data and the output of historical experiments from 30 CMIP6 models.The results indicate that during 1961 -2014, the summer precpitation over eastern China underwent two notable interdecadal variations, which occurred in the mid-1970s and early-1990s.During these two interdecadal variations, the simutaneously enhanced/weakened Western Pacific Subtropical High (WPSH) and South Asian High(SAH) as well as the interdecadal change in tropical Pacific SSTs induce changes in the winds and divergence at the 850-hPa and 200-hPa pressure levels over southern China (18°N -30°N, 105°E -122°E).The associated interdecadal changes in water vapor flux, meridional circulation and atmospheric stability in lower troposphere led to interdecadal changes in summer precipitation in eastern China.Although the CMIP6 models can well simulate the climatology of summer precipitation in eastern China, only 5 out of 30 models have relatively good capability in simulating the aforementioned two interdecadal variations in summer precipitation, which have taylor scores larger than 0.7, while the other models have relatively poor skill.In addition, the best multi-model ensemble (BMME) means show better skills in simulating these two interdecadal variations in summer precipitation than individual models.This is because the BMME can well simulate the simultaneous change in WPSH and SAH as well as the change in tropical Pacific SSTs, which leads to a good simulation of the meridional circulation over eastern China, resulting in a good simulation of the summer precipitation anomalies south of the Yangtze River.

参考文献

null
Brian A Jiang Z H Zhu H H, et al, 2021.Comparison of CMIP6 and CMIP5 models in simulating mean and extreme precipitation over East Africa[J].International Journal of Climatology41(15): 6474-6496.DOI: 10.1002/joc.7207 .
null
Cheng T F Lu M Dai L2019.The zonal oscillation and the driving mechanisms of the extreme Western North Pacific Subtropical High and its impacts on East Asian summer precipitation[J].Journal of Climate32(10): 3025-3050.DOI: 10.1175/JCLI-D- 18-0076.1 .
null
Ding Y H Wang Z Y Sun Y2008.Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon.Part I: Observed evidences[J].International Journal of Climatology28(9): 1139-1161.DOI: 10.1175/JCLI-D-18-0076.1 .
null
Hersbach H Bell B Berrisford P, et al, 2020.The ERA5 global reanalysis[J].Quarterly Journal of Royal Meteorological Society146(730): 1999-2049.DOI: 10.1002/qj.3803 .
null
Huang Y Y Li X F2015.The interdecadal variation of the Western Pacific Subtropical High as measured by 500 hPa eddy geopotential height[J].Atmospheric and Oceanic Science Letters8(7): 371-375.DOI: 10.3878/AOSL20150038 .
null
Jiang Z H Yang S He J, et al, 2008.Interdecadal variations of East Asian summer monsoon northward propagation and influences on summer precipitation over East China[J].Meteorology and Atmospheric Physics, 100: 101-119.DOI: 10.1007/s00703-008-0298-3 .
null
Liu J Wang B Cane M A, et al, 2013.Divergent global precipitation changed induced by natural versus anthropogenic forcing[J].Nature, 493: 656-659.DOI: https: //doi.org/10.1038/nature11784 .
null
North G R Bell T L Cahalan R F, et al, 1982.Sampling errors in the estimation of empirical orthogonal functions[J].Monthly Weather Review110(7): 699-706.DOI: 10.1175/1520-0493(1982)110<0699: SEITE O>2.0.CO; 2 .
null
O' Neill B C Tebaldi C Van Vuuren D P, et al, 2016.The Scenario Model Intercomparison Project (ScenarioMIP)for CMIP6[J].Geoscientific Model Development9(9): 3461-3482.DOI: 10.5194/gmd-9-3461-2016 .
null
Pascoe C Lawrence B N Guilyardi E, et al, 2020.Documenting numerical experiments in support of the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J].Geoscientific Model Development13(5): 2149-2167.DOI: 10.5194/ gmd-13-2149-2020 .
null
Rayner N A Parker D E Horton E B, et al, 2003.Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J].Geophysical Research108(D14): 4407.DOI: 10.1029/2002JD002670 .
null
Srivastava A Grotjahn R Ullrich P A2020.Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions[J].Weather and Climate Extremes, 29: 100268.DOI: 10.1016/j.wace.2020.100268 .
null
Sun B Zhu Y L Wang H J2011.The recent interdecadal and interannual variation of water vapor transport over Eastern China[J].Advancs in Atmospheric Sciences28(5): 1039-1048.DOI: 10.1007/s00376-010-0093-1 .
null
Taylor K E2001.Summarizing multiple aspects of model performance in a single diagram[J].Journal of Geophysical Research Atmospheres106(7): 183-192.DOI: 10.1029/2000JD900719 .
null
Wang H J2001.The weakening of the Asian monsoon circulation after the end of 1970s[J].Advancs in Atmospheric Sciences, 18: 376-386.DOI: 10.1007/BF02919316 .
null
Wei W Zhang R H Wen M, et al, 2015.Interannual variation of the South Asian High and its relation with Indian and East Asian Summer Monsoon Rainfall[J].Journal of Climate28(7): 2623-2634.DOI: https: //doi.org/10.1175/JCLI-D-14-00454.1 .
null
Wu B L Lang X M Jiang D B2023.Changes of summer precipitation modes over Eastern China in simulated warm intervals of the last Interglacial, mid-Holocene and twenty-first century[J].Journal of Climate36(8): 2401-2420.DOI: 10.1175/JCLI-D-21-1002.1 .
null
Wu T W Lu Y X Fang Y J, et al, 2019.The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6[J].Geoscientific Model Development12(4): 1573-1600.DOI: 10.5194/gmd-12-1573-2019 .
null
Yang X L Zhou B T Xu Y, et al, 2021.CMIP6 evaluation and projection of temperature and precipitation over China[J].Advances in Atmospheric Sciences38(5): 817-830.DOI: 10.1007/s00376-021-0351-4 .
null
Zhou B T2011.Linkage between winter sea surface temperature east of Australia and summer precipitation in the Yangtze River valley and a possible physical mechanism[J].Chinese Science Bulleting, 56: 1821-1827.DOI: 10.1007/s11434-011-4497-9 .
null
Zhu Y Y Yang S N2020.Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5[J].Advances in Climate Change Research11(3): 239-251.DOI: 10.1016/j.accre.2020.08.001 .
null
陈荣, 段克勤, 尚溦, 等, 2023.基于CMIP6模式数据的1961-2099年青藏高原降水变化特征分析[J].高原气象42(2): 294-304.DOI: 10.7522/j.issn.1000-0534.2021.00084.Chen R
null
Duan K Q Shang W, et al, 2023.Characteristics of precipitation change over the Qinghai-Xizang Plateau from 1961 to 2099 based on CMIP6 models[J].Plateau Meteorology42(2): 294-304.DOI: 10.7522/j.issn.1000-0534.2021.00084 .
null
程乘, 朱益民, 丁黄兴, 等, 2017.中国东部地区夏季降水和环流的年代际转型及其与PDO的联系[J].气象科学37(4): 450-457.DOI: 10.3969/2016jms.0023.Cheng C
null
Zhu Y M Ding H X, et al, 2017.The interdecadal shift of summer precipitation and atmospheric circulation over East China and its relationship with the PDO[J].Journal of the Meteorological Sciences37(4): 450-457.DOI: 10.3969/2016jms.0023 .
null
范磊, 2013.热带不同海域海温异常对东亚夏季大气环流与降水的影响[D].青岛: 中国海洋大学.Fan L, 2013.Influences of tropical SST anomalies in different regions on the East Asian Summer Monsoon circulation and precipitation[D].Qingdao: Ocean University of China.
null
胡桃, 吕世华, 常燕, 等, 2022.CMIP6模式对青藏高原多年冻土变化的分析预估[J].高原气象41(2): 363-375.DOI: 10.7522/j.issn.1000-0534.2022.00009.Hu T
null
Lv S H Chang Y, et al, 2022.Analysis and prediction of permafrost changes in Qinghai-Xizang Plateau by CMIP6 climate models[J].Plateau Meteorology41(2): 363-375.DOI: 10.7522/j.issn.1000-0534.2022.00009 .
null
胡一阳, 徐影, 李金建, 等, 2021.CMIP6不同分辨率全球气候模式对中国降水模拟能力评估[J].气候变化研究进展17(6): 730-743.DOI: 10.12006/j.issn.1673-1719.2021.005.Hu Y Y
null
Xu Y Li J J, et al, 2021.Evaluation on the performance of CMIP6 global climate models with different horizontal resolution in simulating the precipitation over China[J].Climate Change Research17(6): 730-743.DOI: 10.12006/j.issn.1673-1719.2021.005 .
null
黄荣辉, 陈际龙, 刘永, 2011.我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系[J].大气科学35 (4): 589-606.DOI: 10.3878/j.issn.1006-9895.2011.04.01. Huang R H
null
Chen J L Liu Y2011.Interdecadal variations of the leading modes of summertime precipitation anomalies over Eastern China and its relationship with water vapour transport over East Asia[J].Chinese Journal of Atmospheric Sciences35 (4): 589-606.DOI: 10.3878/j.issn.1006-9895.2011.04.01 .
null
黄小倩, 2023.黄河流域夏季降水变化特征及其成因分析[D].兰州: 兰州大学.Huang X Q, 2023.Analysis of the characteristics of summer precipitation change in the Yellow River Basin and its causes[D].Lanzhou: Lanzhou University.
null
金爱浩, 曾刚, 余晔, 等, 2018.南亚高压与西太平洋副热带高压经纬向位置配置对中国东部夏季降水的影响[J].热带气象学报34(6): 806-818.DOI: 10.16032/j.issn.1004-4965.2018.06.009.Jin A H
null
Zeng G Yu Y, et al, 2018.Effects of latitudinal and longitudinal positions of South Asia High and Western Pacific Subtropical High over summer precipitation over East China[J].Journal of Tropical Meteorology34(6): 806-818.DOI: 10.16032/j.issn.1004-4965.2018.06.009 .
null
雷显辉, 宋敏红, 张少波, 2022.夏季南亚高压和西太副高活动特征指数与中国东部降水分布的联系[J].高原气象41(2): 489-501.DOI: 10.7522/j.issn.1000-0534.2021.00099.Lei X H
null
Song M H Zhang S B2022.Association between summer activity characteristic indices of the South Asia High and the West Pacific Subtropical High and precipitation distribution in Eastern China[J].Plateau Meteorology41(2): 489-501.DOI: 10.7522/j.issn.1000-0534.2021.00099 .
null
吕俊梅, 祝从文, 琚建华, 等, 2014.近百年中国东部夏季降水年代际变化特征及其原因[J].大气科学38(4): 782-794.
null
DOI: 10.3878/j.issn.1006-9895.1401.13227. L ü J M, Zhu C W Ju J H, et al, 2014.Interdecadal variability in summer precipitation over East China during the past 100 years and its possible causes[J].Chinese Journal of Atmospheric Sciences38(4): 782-794.DOI: 10.3878/j.issn.1006-9895.1401.13227 .
null
任永建, 宋连春, 肖莺, 2016.1880-2010年中国东部夏季降水年代际变化特征[J].大气科学学报39(4): 445-454.DOI: 10.13878 /j.cnki.dqkxxb.20160101033.Ren Y J
null
Song L C Xiao Y2016.Interdecadal change of summer precipitation in eastern China during 1880-2010[J].Transactions of Atmospheric Sciences39(4): 445-454.DOI: 10.13878 /j.cnki.dqkxxb.20160101033.
null
孙博, 2015.我国不同区域的水汽源地及有关气候动力学研究分析[D].北京: 中国科学院大学.Sun B, 2015.Moisture sources of precipitation in different regions of China and related climate dynamics[D].Beijing: University of Chinese Academy of Sciences.
null
涂胜哲, 李斯通, 2023.基于CMIP6的分权多模式集合对福建省的降水模拟评价[J].亚热带资源与环境学报18(2): 111-119.DOI: 10.19687/j.cnki.1673-7105.2023.02.015.Tu S Z
null
Li S T2023.Evaluation of precipitation simulation based on weighted multi-model ensemble mean of CMIP6 in Fujian province[J].Journal of Subtropical Resources and Environment18(2): 111-119.DOI: 10.19687/j.cnki.1673-7105.2023.02.015 .
null
王欢, 李栋梁, 2019.气候变暖背景下全球海温对中国东部夏季降水年代际转折的影响[J].热带气象学报35(3): 398-408.DOI: 10.16032/j.issn.1004-4965.2019.037.Wang H
null
Li D L2019.The impact of global sea surface temperature on decadal transitions of summer precipitation over Eastern China at global warming transition points[J].Journal of Tropical Meteorology35(3): 398-408.DOI: 10.16032/j.issn.1004-4965.2019.037 .
null
王予, 李惠心, 王会军, 等, 2021.CMIP6 全球气候模式对中国极端降水模拟能力的评估及其与CMIP5 的比较[J].气象学报79(3): 369-386.DOI: 10.11676/qxxb2021.031.Wang Y
null
Li H X Wang H J, et al, 2021.Evaluation of CMIP6 simulations of extreme precipitation in China and comparison with CMIP5[J].Acta Meteorologica Sinica79(3): 369-386.DOI: 10.11676/qxxb 2021.031 .
null
吴佳, 高学杰, 2013.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报56(4): 1102-1111.DOI: 10.6038/cjg20130406.Wu J
null
Gao X J2013.A gridded daily observation dataset over China region and comparison with the other datasets[J].Chinese Journal of Geophysics56(4): 1102-1111.DOI: 10.6038/cjg20130406.
null
向竣文, 张利平, 邓瑶, 等, 2021.基于CMIP6的中国主要地区极端气温/降水模拟能力评估及未来情景预估[J].武汉大学学报(工学版)54(1): 46-57+81.DOI: 10.14188/j.1671-8844.2021-01-007.Xiang J W
null
Zhang L P Deng Y, et al, 2021.Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models[J].Engineering Journal of Wuhan University54(1): 46-57+81.DOI: 10.14188/j.1671-8844.2021-01-007 .
null
叶天舒, 2015.全球变暖背景下西太平洋副热带高压的北跳及与我国东部夏季降水的关系[D].兰州: 兰州大学.Ye T S, 2015.Twice northward jumps of WPSH and its relationship with summer rainfall in Eastern China under global warming[D].Lanzhou: Lanzhou University.
null
张大鹏, 2022.南亚高压的年代际变化机理及预估研究[D].南京: 南京信息工程大学.Zhang D P, 2022.Interdecadal variations of the South Asian High: change, mechanism and prediction[D]. Nanjing: Nanjing University of Information Science & Technology.
null
郑景云, 吴茂炜, 郝志新, 等, 2016.中国东部夏季降水的年代际变化格局--观测与CESM控制试验模拟结果的对比[J].地理研究35(1): 14-24.DOI: 10.11821/dlyj201601002.Zheng J Y
null
Wu M W Hao Z X, et al, 2016.Spatial pattern of decadal variation of summer precipitation in Eastern China: comparison of observation and CESM control simulation[J].Geographical Research35(1): 14-24.DOI: 10.11821/dlyj201601002 .
null
周连童, 黄荣辉, 2003.关于我国夏季气候年代际变化特征及其可能成因的研究[J].气候与环境研究8(3): 274-290.DOI: 10.3878/j.issn.1006-9585.2003.03.03.Zhou L T
null
Huang R H2003.Research on the characteristics of interdecadal variability of summer climate in China and its possible cause[J].Climatic and Environmental Research8(3): 274-290.DOI: 10.3878/j.issn.1006-9585.2003.03.03 .
null
周天军, 邹立维, 陈晓龙, 2019.第六次国际耦合模式比较计划(CMIP6)评述[J].气候变化研究进展15(5): 445-456.DOI: 10.12006/j.issn.1673-1719.2019.193.Zhou T J
null
Zou L W Chen X L2019.Commentary on the Coupled Model Intercomparison Project Phase 6(CMIP6)[J].Climate Change Research15(5): 445-456.DOI: 10.12006/j.issn.1673-1719.2019.193 .
文章导航

/