青藏铁路沿线气候特征精细化模拟研究
收稿日期: 2023-07-03
修回日期: 2023-12-26
网络出版日期: 2023-12-26
基金资助
中国国家铁路集团有限公司科技研究开发计划项目(P2021G047)
Fine-scale Simulation Study of Climate Characteristics along the Qinghai-Xizang Railway
Received date: 2023-07-03
Revised date: 2023-12-26
Online published: 2023-12-26
青藏铁路格拉段(以下简称青藏铁路), 特别是从西大滩至安多穿越550 km多年冻土区的路段, 沿线有着复杂的地形地貌和冻土环境。近年来随着气候变暖和多年冻土退化, 对于建造在多年冻土之上的青藏铁路的维护需求剧增, 为了能充分捕捉青藏铁路沿线地区复杂的地形地貌对局地气候变化的影响, 以期对青藏铁路的运行维护提供理论支持。本文利用铁路沿线站点观测数据, 并以ERA5数据驱动WRF模式进行网格距离为10 km×10 km的动力降尺度模拟。结果显示, 青藏铁路沿线的六个站点自1998 -2020年普遍呈现增温趋势, 增温率最低的站点为0.27 ℃·(10a)-1, 最高为0.56 ℃·(10a)-1; WRF模式对表面气温的模拟在年平均气温结果与观测数据略有差异, 在夏季和秋季的模拟结果较好, 夏季相关系数达到0.95以上, 秋季在0.80以上, 春季和冬季较差; WRF降水模拟的结果显示, Nudging方法有效改进了青藏高原夏季降水的湿偏差, 青藏铁路北段至铁路南段降水逐渐增加, 且在铁路中部降水出现极大值。WRF模式在青藏高原的温度和降水模拟上仍存在着一定的冷偏差和湿偏差, 寻找新的方法或利用高质量驱动数据来驱动模式将可能对青藏高原地区的降尺度模拟结果有更进一步的改善。
路富全 , 杨耀先 , 胡泽勇 . 青藏铁路沿线气候特征精细化模拟研究[J]. 高原气象, 2024 , 43(4) : 868 -882 . DOI: 10.7522/j.issn.1000-0534.2023.000106
The Qinghai-Xizang Railway (QXR), especially the 550-kilometer segment from Xidatan to Anduo, traverses a region characterized by complex terrain, diverse landforms, and a permafrost environment.In recent years, climate warming and permafrost degradation have significantly increased maintenance demands for the QXR, which is constructed atop permafrost.To understand the impacts of the intricate terrain and landforms along the QXR on local climate changes and to provide theoretical support for its operation and maintenance, this study utilizes station observation data along the railway and employs the Weather Research and Forecasting (WRF) model driven by ERA5 data to conduct high-resolution simulations with a grid resolution of 10 km×10 km.The results indicate that the six stations along the Qinghai-Xizang Railway exhibit a general warming trend from 1998 to 2020, with the lowest temperature increase rate at 0.27 ℃·(10a)-1 and the highest at 0.56 ℃·(10a)-1 years.The WRF model's simulation results show some discrepancies with observed annual mean temperature data.The simulation results are more accurate in summer and autumn, with correlation coefficients above 0.95 in summer and above 0.80 in autumn, but less accurate in spring and winter.Regarding precipitation simulation, the Nudging method effectively reduces the wet bias in summer precipitation on the Qinghai-Xizang Plateau.Precipitation gradually increases from the northern to the southern section of the railway, peaking in the central section.However, the WRF model still exhibits cold and wet biases in temperature and precipitation simulations on the Qinghai-Xizang Plateau.Exploring new methods or utilizing higher-quality driving data may further enhance the downscaled simulation results for this region.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈德亮, 徐柏青, 姚檀栋, 等, 2015.青藏高原环境变化科学评估: 过去、 现在与未来[J].科学通报, 60(32): 3025-3035. |
null | |
null | 董美莹, 陈锋, 邱金晶, 等, 2021.ECMWF驱动场谱逼近对浙江超强台风“利奇马”(2019)精细化数值预报的影响[J].大气科学, 45(5): 1071-1086. |
null | |
null | 高学杰, 李栋梁, 赵宗慈, 等, 2003.温室效应对青藏高原及青藏铁路沿线气候影响的数值模拟[J].高原气象, 22(5): 458-463. |
null | |
null | 李栋梁, 郭慧, 李跃清, 等, 2005.青藏高原及铁路沿线地表温度变化趋势预测[J].高原气象, 24(5): 685-693. |
null | |
null | 李洪兵, 邵爱梅, 李兰倩, 2021.基于谱逼近和地面资料同化的降尺度模拟研究[J].高原气象, 40(4): 919-931.DOI: 10.7522/j.issn.1000-0534.2020.00068.Li H B , |
null | |
null | 南卓铜, 2018.青藏高原1: 300万冻土图.国家冰川冻土沙漠科学数据中心.https: //cstr.cn/CSTR: 11738.11.ncdc.Westdc. 2020.303.Nan Z T, 2018.Permafrost map of the Tibetan Plateau at 1: 300, 000.National Cryosphere Desert Data Center. |
null | 石英, 吴婕, 徐影, 2021.区域气候模式水平分辨率对黄淮海流域当代气候模拟的影响[J].水科学进展, 32(6): 843-854.DOI: 10.14042/j.cnki.32.1309.2021.06.004.Shi Y , |
null | |
null | 万玮, 肖鹏峰, 冯学智, 等, 2014.卫星遥感监测近30年来青藏高原湖泊变化[J].科学通报, 59(8): 701-714. |
null | |
null | 徐影, 丁一汇, 李栋梁, 2003.青藏地区未来百年气候变化[J].高原气象, 22(5): 451-457. |
null | |
null | 杨珂珂, 郭东林, 华维, 等, 2023.CMIP6 HighResMIP 对青藏高原气候模拟的评估和预估[J].大气科学学报, 46( 2): 193-204. |
null | |
null | 杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象, 41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117.Yang Y X , |
null | |
null | 姚檀栋, 邬光剑, 徐柏青, 等, 2019.“亚洲水塔”变化与影响[J].中国科学院院刊, 34(11): 1203-1209. |
null | |
null | 张春雨, 刘爱利, 吕嫣冉, 等, 2023.基于 CMIP6青藏高原腹地气候模拟评估及时空分析[J].高原气象, 42(5): 1144-1159.DOI: 10.7522/j.issn.1000-0534.2022.00104.Zhang C Y , |
null | |
null | 张宏文, 高艳红, 2020.基于动力降尺度方法预估的青藏高原降水变化[J].高原气象, 39(3): 477-485.DOI: 10.7522/j.issn.1000-0534.2019.00125.Zhang H W , |
null | |
null | 张歆然, 2021.青藏高原东坡地区暖季降水模拟偏差分析[D].北京: 中国气象科学研究院.Zhang X R, 2021.Analysis of simulation bias of the warm season precipitation on the eastern periphery of the Tibetan Plateau[D].Beijing: Chinese Academy of Meteorological Sciences. |
null | 赵丹, 2022.青藏高原冬季气温年代际变化对周边气溶胶聚集的影响[D].兰州: 兰州大学.Zhao D, 2022.The influence of interdecadal variation of temperature over the Tibetan plateau on aerosols of its surroundings in winter[D].Lanzhou: Lanzhou University. |
null | 周天军, 张文霞, 陈晓龙, 等, 2020.青藏高原气温和降水近期、 中期与长期变化的预估及其不确定性来源[J].气象科学, 40(5): 697-710. |
null |
/
〈 |
|
〉 |