青藏铁路沿线湖泊及其与铁路最小距离演变研究

  • 于涛 ,
  • 张圣杰 ,
  • 文莉娟 ,
  • 王梦晓 ,
  • 郑景元 ,
  • 牛瑞佳
展开
  • 1. 兰州理工大学石油化工学院,甘肃 兰州 730050
    2. 中国科学院西北生态环境资源研究院 青海湖综合研究观测站,甘肃 兰州 730000
    3. 中国科学院大学,北京 100049

于 涛(1971 -), 男, 山东青岛人, 副教授, 主要从事气候变化与生态环境研究. E-mail:

收稿日期: 2023-11-13

  修回日期: 2024-05-06

  网络出版日期: 2024-05-06

基金资助

中国科学院“西部之光”项目(E129030101); 甘肃省自然科学基金项目(22JR5RA073); 国家自然科学基金项目(42275044); 中国国家铁路集团有限公司科技研究开发计划项目(P2021G047)

Study on Evolutions of Lakes Along the Qinghai-Xizang Railway and the Minimum Distance from Lakes to the Railway

  • Tao YU ,
  • Shengjie ZHANG ,
  • Lijuan WEN ,
  • Mengxiao WANG ,
  • Jingyuan ZHENG ,
  • Ruijia NIU
Expand
  • 1. School of Petrochemical Engineering,Lanzhou University of Technology,Lanzhou 730050,Gansu,China
    2. Qinghai Lake Comprehensive Observation and Research Station,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2023-11-13

  Revised date: 2024-05-06

  Online published: 2024-05-06

摘要

受全球气候变化影响, 青藏高原湖泊近年来变化剧烈, 充分了解湖泊演变特征及其驱动因素对保护沿湖重大工程设施有重要意义。基于青海湖与错那湖的Landsat遥感影像、 面积数据和水位观测数据, 本文对两湖演变及其与青藏铁路最小距离变化进行了细致研究, 进一步结合中国区域高时空分辨率地面气象要素驱动数据集(CMFD)和气象站的气象数据, 揭示了影响两湖水位变化的主要气象因子, 结果表明: (1)1956 -2004年青海湖呈退缩态势, 2004年水位和面积达到最低值后转为逐渐增加, 2004 - 2020年水位年均增长率为0.20 m·a-1, 2004 -2022年面积年均增长率为19.20 km2·a-1。2000 -2018年的错那湖水位与从20世纪70年代至2022年的面积均呈轻微波动变化, 水位和面积的年际最大变化值分别为0.60 m和9.98 km2。(2)1990 -2022年青海湖与青藏铁路最小距离先增加后减小, 2004年后二者最小距离以19.6 m·a-1的速率缩短, 至2022年最小距离为74.3 m; 2004 -2022年错那湖与青藏铁路最小距离变化趋势不明显, 至2022年二者最小距离为32.3 m。(3)青海湖的水位变化受风速、 年降水量、 向下短波辐射、 向下长波辐射和比湿影响, 贡献率分别为38%、 24%、 20%、 14%和4%; 错那湖水位变化主要受年降水量影响, 其余气象因子与水位变化相关性不显著。

本文引用格式

于涛 , 张圣杰 , 文莉娟 , 王梦晓 , 郑景元 , 牛瑞佳 . 青藏铁路沿线湖泊及其与铁路最小距离演变研究[J]. 高原气象, 2025 , 44(1) : 163 -177 . DOI: 10.7522/j.issn.1000-0534.2024.00063

Abstract

Affected by global climate change, lakes on the Qinghai-Xizang Plateau have undergone drastic changes in recent years.Understanding the characteristics of lake evolution and their driving factors is of great significance for the protection of major engineering facilities along the lakeshore.Based on Landsat remote sensing images, area data, and water level observation data of Qinghai Lake and Lake Cuona, this study conducted a detailed investigation into the evolution of the two lakes and their minimum distances from the Qinghai-Xizang Railway.Furthermore, by integrating the China Meteorological Forcing Dataset (CMFD) with high spatiotemporal resolution ground meteorological elements and meteorological data from meteorological stations, the main meteorological factors influencing water level changes in the two lakes were revealed.The results show: (1) From 1956 to 2004, Qinghai Lake exhibited a shrinking trend.After reaching their lowest values in water level and area in 2004, Qinghai Lake began to gradually increase.During the period from 2004 to 2020, the annual average growth rate of water level was 0.20 m·a-1, and the annual average growth rate of area was 19.20 km2·a-1.The water level of Lake Cuona from 2000 to 2018 and the area from the 1970s to 2022 showed slight fluctuations.The maximum interannual fluctuation values of water level and area were 0.60 m and 9.98 km2, respectively.(2) From 1990 to 2022, the minimum distance between Qinghai Lake and the Qinghai-Xizang Railway first increased and then decreased.After 2004, the minimum distance between them decreased at a rate of 19.6 m·a-1, reaching 74.3 m by 2022.The change trend in the minimum distance between Lake Cuona and the Qinghai-Xizang Railway from 2004 to 2022 was not significant, reaching 32.3 m by 2022.(3) The water level changes of Qinghai Lake are influenced by wind speed, annual precipitation, downward shortwave radiation, downward longwave radiation, and specific humidity, with contributions of 38%, 24%, 20%, 14%, and 4% respectively.The water level changes of Lake Cuona are mainly influenced by precipitation, with other meteorological factors showing no significant correlation with water level changes.

参考文献

null
Deoli V Kumar D Kuriqi A2022.Detection of water spread area changes in Eutrophic Lake using landsat data[J].Sensors22(18): 6827.DOI: 10.3390/s22186827 .
null
Dong H Song Y Zhang M2019.Hydrological trend of Qinghai Lake over the last 60 years: driven by climate variations or human activities?[J].Journal of Water and Climate Change10(3): 524-534.DOI: 10.2166/wcc.2018.033 .
null
He J Yang K Tang W J, et al, 2020.The first high-resolution meteorological forcing dataset for land process studies over China[J].Scientific Data7(1): 25.DOI: 10.1038/s41597-020-0369-y .
null
Hou P F Weidman R P Liu Q, et al, 2023.Recent water-level fluctuations, future trends and their eco-environmental impacts on Lake Qinghai[J].Journal of Environmental Management, 333: 117461.DOI: 10.1016/j.jenvman.2023.117461 .
null
Immerzeel W W Van Beek L P H Bierkens M F P2010.Climate change will affect the Asian Water Towers[J].Science328(5984): 1382-1385.DOI: 10.1126/science.1183188 .
null
Li X D Long D Huang Q, et al, 2019.High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000-2017 using multiple altimetric missions and Landsat-derived lake shoreline positions[J].Earth System Science Data11(4): 1603-1627.DOI: 10.5194/essd-11-1603-2019 .
null
Li X D Zhang T J Yang D Q, et al, 2023.Research on lake water level and its response to watershed climate change in Qinghai Lake from 1961 to 2019[J].Frontiers in Environmental Science, 11: 1130443.DOI: 10.3389/fenvs.2023.1130443 .
null
Li Y K Liao J J Guo H D, et al, 2014.Patterns and potential drivers of dramatic changes in Tibetan Lakes, 1972-2010[J].Plos One, 9(11): e111890.DOI: 10.1371/journal.pone.0111890 .
null
Liu W M Carling P A Hu K H, et al, 2019.Outburst floods in China: a review[J].Earth-Science Reviews, 197: 102895.DOI: 10.1016/j.earscirev.2019.102895 .
null
Ma N Szilagyi J Niu G Y, et al, 2016.Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion[J].Journal of Hydrology, 537: 27-35.DOI: 10. 1016/j.jhydrol.2016.03.030 .
null
Ma W Y Bai L Ma W Q, et al, 2022.Interannual and monthly variability of typical inland lakes on the Tibetan Plateau located in three different climatic zones[J].Remote Sensing14(19): 5015.DOI: 10.3390/rs14195015 .
null
Qin B Q Zhang Y L Deng J M, et al, 2022.Polluted lake restoration to promote sustainability in the Yangtze River Basin, China[J].National Science Review9(1): nwab207.DOI: 10.1093/nsr/nwab207 .
null
Sha Y Y Shi Z G Liu X D, et al, 2015.Distinct impacts of the Mongolian and Tibetan Plateaus on the evolution of the East Asian monsoon[J].Journal of Geophysical Research: Atmospheres120(10): 4764-4782.DOI: 10.1002/2014JD022880 .
null
Su M M Wall G2009.The Qinghai-Tibet railway and Tibetan tourism: Travelers’ perspectives[J].Tourism Management30(5): 650-657.DOI: 10.1016/j.tourman.2008.02.024 .
null
Wang H W Qi Y Lian X H, et al, 2022.Effects of climate change and land use/cover change on the volume of the Qinghai Lake in China[J].Journal of Arid Land14(3): 245-261.DOI: 10. 1007/s40333-022-0062-4 .
null
Xiao K Griffis T J Baker J M, et al, 2018.Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level[J].Journal of Hydrology, 561: 59-75.DOI: 10.1016/j.jhydrol.2018.03.059 .
null
Yang K Lu H Yue S Y, et al, 2018.Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau[J].Climatic Change147(1-2): 149-163.DOI: 10.1007/s10584-017-2127-5 .
null
Yang K Wu H Qin J, et al, 2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J].Global and Planetary Change, 112: 79-91.DOI: 10. 1016/j.gloplacha.2013.12.001 .
null
Zhang G Q Duan S Q2021.Lakes as sentinels of climate change on the Tibetan Plateau[J].All Earth33(1): 161-165.DOI: 10. 1080/27669645.2021.2015870 .
null
Zhang G Q Yao T D Chen W F, et al, 2019a.Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes[J].Remote Sensing of Environment, 221: 386-404.DOI: 10.1016/j.rse.2018.11.038 .
null
Zhang G Q Luo W Chen W F, et al, 2019b.A robust but variable lake expansion on the Tibetan Plateau[J].Science Bulletin64(18): 1306-1309.DOI: 10.1016/j.scib.2019.07.018 .
null
Zhang G Yao T D Xie H J, et al, 2014.Lakes’ state and abundance across the Tibetan Plateau[J].Chinese Science Bulletin59(24): 3010-3021.DOI: 10.1007/s11434-014-0258-x .
null
Zhang G Yao T Xie H, et al, 2020.Response of Tibetan Plateau lakes to climate change: trends, patterns, and mechanisms[J].Earth-Science Reviews, 208: 103269.DOI: 10.1016/j.earscirev.2020.103269 .
null
Zhang J Hu Q W Li Y K, et al, 2021.Area, lake-level and volume variations of typical lakes on the Tibetan Plateau and their response to climate change, 1972-2019[J].Geo-Spatial Information Science24(3): 458-473.DOI: 10.1080/10095020.2021. 1940318 .
null
Zhou J Wang L Zhang Y S, et al, 2015.Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003-2012 from a basin‐wide hydrological modeling[J].Water Resources Research51(10): 8060-8086.DOI: 10.1002/2014WR015846 .
null
Zheng J Y Wen L J Wang M X, et al, 2023.Study on characteristics of water level variations and water balance of the largest lake in the Qinghai-Tibet Plateau[J].Water15(20): 3614.DOI: 10. 3390/w15203614 .
null
Zhong X Y Wang L Zhou J, et al, 2020.Precipitation dominates long-term water storage changes in Nam Co Lake (Tibetan Plateau) accompanied by intensified cryosphere melts revealed by a basin-wide hydrological modelling[J].Remote Sensing12(12): 1926.DOI: 10.3390/rs12121926 .
null
Zhang Z Chang J Xu C Y, et al, 2018.The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years[J].Science of the Total Environment, 635: 443-451.DOI: 10.1016/j.scitotenv. 2018.04.113 .
null
巴桑赤烈, 刘景时, 牛竟飞, 等, 2012.西藏中部巴木错湖泊面积变化及其原因分析[J].自然资源学报27(2): 302-310.DOI: 10.3969/j.issn.1000-3177.2022.02.006.Bhasang T
null
Liu J S Niu J F, et al, 2012.Area variation and its causes of Bamu Co Lake in the Central Tibet[J].Journal of Natural Resources27(2): 302-310.DOI: 10.3969/j.issn.1000-3177.2022.02.006 .
null
白文蓉, 余迪, 刘彩红, 等, 2019.气候变暖背景下青海湖水位及面积变化趋势及成因分析[J].青海科技26(3): 72-78.DOI: 10.7522/j.issn.1000-0240.2018.0006.Bai W R
null
Yu D Liu C H, et al, 2019.Change trend and cause analysis of water level and area of Qinghai Lake under the background of climate warming[J].Qinghai Science and Technology26(3): 72-78.DOI: 10.7522/j.issn.1000-0240.2018.0006 .
null
常亚茹, 张继贤, 韩文立, 等, 2022.利用Sentinel-1A数据的纳木错湖面月际变化监测[J].遥感信息37(2): 45-52.DOI: 10.3969/j.issn.1000-3177.2022.02.006.Chang Y R
null
Zhang J X Han W L, et al, 2022.Monitoring inter-monthly change of Namtso Lake surface using Sentinel-1A Data[J].Remote Sensing Information37(2): 45-52.DOI: 10.3969/j.issn.1000-3177.2022.02.006 .]
null
车向红, 冯敏, 姜浩, 等, 2015.2000-2013年青藏高原湖泊面积MODIS遥感监测分析[J].地球信息科学学报17(1): 99-107.DOI: 10.3724/SP.J.1047.2015.00099.Che X H
null
Feng M Jiang H, et al, 2015.Detection and analysis of Qinghai-Tibet Plateau Lake Area from 2000 to 2013[J].Journal of Geo-Information Science17(1): 99-107.DOI: 10.3724/SP.J.1047.2015.00099 .
null
陈继, 党海明, 美启航, 等, 2023.青藏铁路多年冻土区旱桥桩基沉降病害及其治理启示[J].冰川冻土45(4): 1327-1334.DOI: 10.7522/j.issn.1000-0240.2019.0068.Chen J
null
Dang H M Mei Q H, et al, 2023.Settlement diseases of land-bridge piles in the Qinghai-Tibet Railway and inspiration from its treatment[J].Journal of Glaciology and Geocryology45(4): 1327-1334.DOI: 10.7522/j.issn.1000-0240.2019.0068 .
null
董斯扬, 薛娴, 尤全刚, 等, 2014.近40 年青藏高原湖泊面积变化遥感分析[J].湖泊科学26(4): 535-544.
null
Dong S Y Xue X You Q G, et al, 2014.Remote sensing monitoring of the lake area changes in the Qinghai-Tibet Plateau in recent 40 years[J].Journal of Lake Sciences26(4): 535-544.
null
杜玉娥, 刘宝康, 贺卫国, 等, 2018.1976-2017年青藏高原可可西里盐湖面积动态变化及成因分析[J].冰川冻土40(1): 47-54.DOI: 10.7522 /j.issn.1000-0240.2018.0006.Du Y E
null
Liu B K He W G, et al, 2018.Dynamic change and cause analysis of Salt Lake area in Hoh Xil on Qinghai-Tibet Plateau during 1976-2017[J].Journal of Glaciology and Geocryology40(1): 47-54.DOI: 10.7522 /j.issn.1000-0240.2018.0006 .
null
韩艳莉, 于德永, 陈克龙, 等, 2022.2000-2018年青海湖流域气温和降水量变化趋势空间分布特征[J].干旱区地理45(4): 999-1009.DOI: 10.12118/j.issn.1000-6060.2021.490.Han Y L
null
Yu D Y Chen K L, et al, 2022.Spatial distribution characteristics of temperature and precipitation trend in Qinghai Lake Basin from 2000 to 2018 [J].Arid Land Geography45(4): 999-1009.DOI: 10.12118/j.issn.1000-6060.2021.490 .
null
刘宝康, 李林, 杜玉娥, 等, 2016.青藏高原可可西里卓乃湖溃堤成因及其影响分析[J].冰川冻土38(2): 305-311.DOI: 10.7522/j.issn.1000-0240.2016.0033.Liu B K
null
Li L Du Y E, et al, 2016.Causes of the outburst of Zonag Lake in Hoh Xil, Tibetan Plateau, and its impact on surrounding environment[J].Journal of Glaciology and Geocryology38(2): 305-311.DOI: 10.7522/j.issn.1000-0240.2016.0033 .
null
刘建康, 张佳佳, 高波, 等, 2019.我国西藏地区冰湖溃决灾害综述[J].冰川冻土41(6): 1335-1347.DOI: 10.7522/j.issn.1000-0240.2019.0073.Liu J K
null
Zhang J J Gao B, et al, 2019.An overview of glacial lake outburst flood in Tibet, China[J].Journal of Glaciology and Geocryology41(6): 1335-1347.DOI: 10.7522/j.issn.1000-0240.2019.0073 .
null
刘扬, 王竹, 王芳, 2022.青海湖流域气温降水特征分析[J].水文42(5): 82-88.DOI: 10.19797/j.cnki.1000-0852.20220246.Liu Y
null
Wang Z Wang F2022.Characteristics analysis of temperature and precipitation in Qinghai Lake Basin[J].Journal of China Hydrology42(5): 82-88.DOI: 10.19797/j.cnki.1000-0852.20220246 .
null
骆成凤, 许长军, 曹银璇, 等, 2017.1974-2016年青海湖水面面积变化遥感监测[J].湖泊科学29(5): 1245-1253.DOI: 10.18307/2017.0523.Luo C F
null
Xu C J Cao Y X, et al, 2017.Monitoring of water surface area in Lake Qinghai from 1974 to 2016 [J].Journal of Lake Sciences29(5): 1245-1253.DOI: 10.18307/2017.0523 .
null
宋怡, 马明国, 2007.基于SPOT VEGETATION数据的中国西北植被覆盖变化分析[J].中国沙漠27(1): 89-93+173.
null
Song Y Ma M G2007.Study on vegetation cover change in Northwest China based on Spot Vegetation Data[J].Journal of Desert Research27(1): 89-93+173.
null
孙永寿, 李其江, 刘弢, 等, 2021.青海湖1956-2019年水位变化原因及水量平衡分析研究[J].水文41(5): 91-96.DOI: 10.19797/j.cnki.1000-0852.20200215.Sun Y S
null
Li Q J Liu T, et al, 2021.Analysis of Qinghai Lake's water level changes and water balance analysis from 1956 to 2019[J].Journal of China Hydrology41(5): 91-96.DOI: 10.19797/j.cnki.1000-0852.20200215 .
null
田露, 郭伟, 倪向南, 等, 2023.青海湖地区潜在蒸散发变化特征及影响因子分析[J].地球环境学报14(3): 328-338.DOI: 10.7515/JEE222058.Tian L
null
Guo W Ni X N, et al, 2023.Analysis of potential evapotranspiration trends and its factors in Qinghai Lake area[J].Journal of Earth Environment14(3): 328-338.DOI: 10.7515/JEE222058 .
null
王坤鑫, 张寅生, 张腾, 等, 2020.1979-2017年青藏高原色林错流域气候变化分析[J].干旱区研究37(3): 652-662.DOI: 10.13866/j.azr.2020.03.13.Wang K X
null
Zhang Y S Zhang T, et al, 2020.Analysis of climate change in the Selin Co Basin, Tibetan Plateau, from 1979 to 2017[J].Arid Zone Research37(3): 652-662.DOI: 10.13866/j.azr.2020.03.13 .
null
谢胜波, 屈建军, 刘冰, 等, 2014.青藏铁路沙害及其防治研究进展[J].中国沙漠34(1): 42-48.DOI: 10.7522/j.issn.1000-694X.2013.00087.Xie S B
null
Qu J J Liu B, et al, 2014.Advances in research on the sand hazards and its controls along the Qinghai-Tibet Railway [J].Journal of Desert Research34(1): 42-48.DOI: 10.7522/j.issn.1000-694X.2013.00087 .
null
谢婷, 马育军, 张午朝, 2021.青海湖北岸大气向下长波辐射特征及云的影响[J].干旱气象39(2): 288-295.DOI: 10.11755/j.issn.1006-7639(2021)-02-0288.Xie T
null
Ma Y J Zhang W Z2021.Characteristics of atmospheric downward longwave radiation and influence of cloud on the northern shore of the Qinghai Lake[J].Journal of Arid Meteorology39(2): 288-295.DOI: 10.11755/j.issn.1006-7639(2021)-02-0288 .
null
杨城, 邢艳秋, 马超, 2022.青藏铁路沿线NDVI的人类活动和气候变化响应[J].测绘科学47(4): 137-145.DOI: 10.16251/j.cnki.1009-2307.2022.04.018.Yang C
null
Xing Y Q Ma C2022.The response of NDVI along the Qinghai-Tibet railway to human activities and climate change[J].Science of Surveying and Mapping47(4): 137-145.DOI: 10.16251/j.cnki.1009-2307.2022.04.018 .
null
杨显明, 张鸽, 加壮壮, 等, 2021.全球气候变化背景下青海湖岸线变化及其对社会经济影响[J].高原科学研究5(4): 1-9+15.DOI: 10.16249/j.cnki.2096-4617.2021.04.001.Yang X M
null
Zhang G Jia Z Z, et al, 2021.Study on the shoreline evolution of Qinghai Lake and its socio-economic impact under the background of global climate change[J].Plateau Science Research5(4): 1-9+15.DOI: 10.16249/j.cnki.2096-4617.2021.04.001 .
null
姚正毅, 屈建军, 2012.青藏铁路格尔木-拉萨段风成沙物源及其粒度特征[J].中国沙漠32(2): 300-307.
null
Yao Z Y Qu J J2012.Source and Grain size of aeolian sands along Golmud-Lhasa Section of Qinghai-Tibet Railway[J].Journal of Desert Research32(2): 300-307.
null
张益舶, 张熙胤, 刘有乾, 等, 2023.多年冻土退化对青藏铁路桥梁桩基础地震易损性的影响[J].冰川冻土45(3): 953-965.DOI: 10.7522/j.issn.1000-0240.2023.0072.Zhang Y B
null
Zhang X Y Liu Y Q, et al, 2023.Effect of permafrost degradation on seismic vulnerability of bridge pile foundations along Qinghai-Tibet Railway[J].Journal of Glaciology and Geocryology45(3): 953-965.DOI: 10.7522/j.issn.1000-0240.2023.0072 .
null
张运林, 秦伯强, 朱广伟, 等, 2022.论湖泊重要性及我国湖泊面临的主要生态环境问题[J].科学通报67(30): 3503-3519.DOI: 10.1360/TB-2022-0178.Zhang Y L
null
Qin B Q Zhu G W, et al, 2022.Importance and main ecological and environmental problems of lakes in China[J].Chinese Science Bulletin67(30): 3503-3519.DOI: 10.1360/TB-2022-0178 .
null
周丹, 张娟, 罗静, 等, 2021.青海湖水位变化成因分析及其未来趋势预估研究[J].生态环境学报30(7): 1482-1491.DOI: 10.16258/j.cnki.1674-5906.2021.07.017.Zhou D
null
Zhang J Luo J, et al, 2021.Analysis on the causes of Qinghai Lake water level changes and prediction of its future trends[J].Ecology and Environmental Sciences30(7): 1482-1491.DOI: 10.16258/j.cnki.1674-5906.2021.07.017 .
null
周鹏, 谢元礼, 蒋广鑫, 等, 2020.遥感影像水体信息提取研究进展[J].遥感信息35(5): 9-18.DOI: 10.3969/j.issn.1000-3177.2020.05.002.Zhou P
null
Xie Y L Jiang G X, et al, 2020.Advances on water body information extraction from remote sensing imagery[J].Remote Sensing Information35(5): 9-18.DOI: 10. 3969/j.issn.1000-3177.2020.05.002 .
null
朱颖彦, 李朝月, 杨志全, 等, 2021.中巴喀喇昆仑公路冰湖溃决灾害[J].山地学报39(4): 524-538.DOI: 10.16089/j.cnki.1008-2786.000617.Zhu Y Y
null
Li C Y Yang Z Q, et al, 2021.Glacier Lake Outburst Flood (GLOF) along China-Pakistan International Karakoram Highway(KKH)[J].Mountain Research39(4): 524-538.DOI: 10.16089/j.cnki.1008-2786.000617 .
null
王苏民, 窦鸿身, 1998.中国湖泊志[M].科学出版社, 409.
null
Wang S M Dou H S1998.Annals of lakes in China[M].Science Press, 409.
null
李兴东, 龙笛, 黄琦, 等, 2019.青藏高原高时间分辨率湖泊水位及水量变化数据集2000-2017年)[DS].国家青藏高原科学数据中心.DOI: 10.1594/PANGAEA.898411.Li X D
null
Long D Huang Q, et al, 2019.High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000-2017[DS].National Tibetan Plateau / Third Pole Environment Data Center.DOI: 10.1594/PANGAEA.898411 .
null
张国庆, 2019.青藏高原大于1平方公里湖泊数据集(v3.1)(1970s-2022)[DS].国家青藏高原科学数据中心.DOI: 10.1016/j.scib.2019.07.018.Zhang G Q, 2019.The lakes larger than 1km2 in Tibetan Plateau (v3.1) (1970s-2022)[DS].National Tibetan Plateau / Third Pole Environment Data Center.DOI: 10.1016/j.scib.2019.07.018 .
null
张国庆, 2021.青海湖水文气象数据(1956-2020)[DS].国家青藏高原科学数据中心.DOI: 10.1080/27669645.2021.2015870.Zhang G Q, 2021.Qinghai Lake hydrology and climate data (1956-2020)[DS].National Tibetan Plateau / Third Pole Environment Data Center.DOI: 10.1080/27669645.2021.2015870 .
null
程玉菲, 王军德, 鱼腾飞, 等, 2023.近30 年甘肃省主要湖泊面积变化及其影响因素分析[J].高原气象42(1): 150-162.DOI: 10.7522/j.issn.1000-0534.2022.00014.Cheng Y F
null
Wang J D Yu T F, et al, 2023.Analysis of lakes area change and their influencing factors in Gansu Province in recent 30 years[J].Plateau Meteorology42(1): 150-162.DOI: 10.7522/j.issn.1000-0534.2022.00014 .
null
张霞, 段建平, 马柱国, 2023.基于日干旱指数的青藏高原1979-2020年干湿变化特征分析[J].高原气象42(4): 870-886.DOI: 10.7522/j.issn.1000-0534.2022.00093.Zhang X
null
Duan J P Ma Z G2023.A daily drought index-based dry and wet variation analyses over the Qinghai-Xizang Plateau from 1979 to 2020[J].Plateau Meteorology42(4): 870-886.DOI: 10.7522/j.issn.1000-0534.2022.00093 .
null
李林, 申红艳, 刘彩红, 等, 2020.青海湖水位波动对气候暖湿化情景的响应及其机理研究[J].气候变化研究进展16(5): 600-608.DOI: 10.12006/j.issn.1673-1719.2019.243.Li L
null
Shen H Y Liu C H, et al, 2020.Response of water level fluctuation to climate warming and wetting scenarios and its mechanism on Qinghai Lake [J].Climate Change Research16(5): 600-608.DOI: 10.12006/j.issn.1673-1719.2019.243 .
null
陈长委, 伍永秋, 谭利华, 等, 2019.青藏铁路错那湖段沙漠化土地变化及成因分析[J].干旱区地理42(4): 885-892.DOI: 10.12118/j.issn.1000-6060.2019.04.20.Chen C W
null
Wu Y Q Tan L H, et al, 2019.Desertified land change and its causes in Co Nag Lake region along Qinghai-Tibet Railway[J].Arid Land Geography42(4): 885-892.DOI: 10.12118/j.issn.1000-6060.2019.04.20 .
null
王艳婷, 李崇贵, 郝利军, 2014.用岭估计估测以分类为前提的森林蓄积量[J].东北林业大学学报42(9): 39-42, 57.DOI: 10.13759/j.cnki.dlxb.20140721.015.Wang Y T
null
Li C G Hao L J2014.Forest volume estimation on the premise of classification by ridge estimate[J].Journal of Northeast Forestry University42(9): 39-42, 57.DOI: 10.13759/j.cnki.dlxb.20140721.015 .
null
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117.Yang Y X
null
Hu Z Y Lu F Q, et al, 2022.Progress of recent 60 years’ climate change and its environmental impacts on the Qinghai-Xizang Plateau[J].Plateau Meteorology41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117 .
null
李振南, 雷伟伟, 王一帆, 等, 2023.基于多源卫星测高数据的青海湖水位变化研究[J].测绘科学48(5): 140-151.DOI: 10.16251/j.cnki.1009-2307.2023.05.017.Li Z N
null
Lei W W Wang Y F, et al, 2023.Water level variation of Qinghai Hu based on multi-source satellite altimetry data[J].Science of Surveying and Mapping48(5): 140-151.DOI: 10.16251/j.cnki.1009-2307.2023.05.017 .
文章导航

/