2022 -2023年中昆仑山北坡不同海拔气象要素梯度对比分析

  • 徐月月 ,
  • 何清 ,
  • 毛东雷 ,
  • 付光祥 ,
  • 李晶晶 ,
  • 王永强 ,
  • 张乾
展开
  • 1. 新疆师范大学地理科学与旅游学院/新疆干旱区湖泊环境与资源重点实验室,新疆 乌鲁木齐 830054
    2. 中国气象局乌鲁木齐沙漠气象研究所 新疆塔克拉玛干沙漠气象国家野外科学观测研究站 中国气象局 塔克拉玛干沙漠气象野外科学试验基地 新疆沙漠气象与沙尘暴重点实验室,新疆 乌鲁木齐 830002
    3. 新疆维吾尔自治区和田地区民丰县气象局,新疆 民丰 848599

徐月月(2001 -), 女, 河南南阳人, 硕士研究生, 主要从事陆面过程研究. E-mail:

收稿日期: 2024-01-22

  修回日期: 2024-05-06

  网络出版日期: 2024-05-06

基金资助

国家自然科学基金项目(42030612); 第二次青藏高原综合科学考察研究项目(2019QZKK010206); 第三次新疆综合科学考察项目(2021xjkk030501)

Comparative Analysis of the Gradient of Meteorological Elements at Different Elevations of the North Slope of the Middle Kunlun Mountains from 2022 to 2023

  • Yueyue XU ,
  • Qing HE ,
  • Donglei MAO ,
  • Guangxiang FU ,
  • Jingjing LI ,
  • Yongqiang WANG ,
  • Qian ZHANG
Expand
  • 1. College of Geography and Tourism,Xinjiang Normal University,Xinjiang Key Laboratory of Lake Environment and Resources in Arid Region,Urumqi 830054,Xinjiang,China
    2. Institute of Desert Meteorology,China Meteorological Administration/National bservation and Research Station of Desert Meteorology,Taklimakan Desert of Xinjiang/Taklimakan Desert Meteorology Field Experiment Station of China Meteorological Administration/Xinjiang Key Laboratory of Desert Meteorology and Sandstorm,Urumqi 830002,Xinjiang,China
    3. Hetian,Xinjiang Urumqi Autonomous Region Minfeng County Meteorological Bureau,Minfeng 848599,Xinjiang,China

Received date: 2024-01-22

  Revised date: 2024-05-06

  Online published: 2024-05-06

摘要

中昆仑山北坡既包含绿洲、 荒漠及其过渡带等不同下垫面, 又囊括沙漠和高原气候, 由北向南生态环境差异大, 气候变化多端, 然而由于山地地区自然环境恶劣, 气象台站较少且分布不均, 给该地区气象要素的研究带来了一定挑战, 致使对该区域气象要素的掌握尚不全面, 因此开展关于中昆仑山北坡气象要素的研究十分有必要。本文利用中昆仑山北坡9个不同海拔气象台站连续一年(2022年8月至2023年7月)的气象要素数据, 探究该山区1.5 m高度处近地面气象要素随海拔梯度的时空变化特征。结果表明: (1)不同海拔风向变化显著, 风速随海拔升高而增大, 海拔1738~3044 m的站点受山谷风影响, 存在两个主导风向且风速日变化呈“双峰型”; (2)中昆仑山北坡的气温垂直递减率(Temperature lapse rate, 以下简称TLR)均低于标准大气气温直减率, 平均气温垂直递减率TLR mean、 最高气温垂直递减率TLR max和最低气温垂直递减率TLR min分别为-0.56 ℃·(100m)-1、 -0.60 ℃·(100m)-1和-0.47 ℃·(100m)-1, 季节性特征表现为夏季陡, 冬季浅; (3)不同海拔存在多个逆温层和逆湿层, 逆温和逆湿强度的季节差异较大, 表现为夏季逆温强度最小, 逆湿强度较大, 冬季逆温强度最大, 逆湿强度最小, 最强逆温和逆湿均出现在海拔1256~1409 m; (4)夏季典型天气下晴天的逆温逆湿均大于阴雨天, 晴天最大逆温强度是阴雨天的4.32倍, 晴天比湿变化范围大于阴雨天, 逆湿强度是阴雨天的1.11倍; (5)中昆仑山北坡4 -9月占全年总降水的86%以上, 随海拔升高降水梯度变化明显, 表现为“增多-减少-增多”的趋势, 在2800~3200 m存在一个明显降水带。

本文引用格式

徐月月 , 何清 , 毛东雷 , 付光祥 , 李晶晶 , 王永强 , 张乾 . 2022 -2023年中昆仑山北坡不同海拔气象要素梯度对比分析[J]. 高原气象, 2025 , 44(1) : 224 -239 . DOI: 10.7522/j.issn.1000-0534.2024.00064

Abstract

The north slope of the Middle Kunlun Mountains contains different sub-surfaces such as oases, deserts and their transition zones, as well as deserts and plateau climates, with great ecological differences and climate variations from north to south.However, the poor natural environment of the mountainous areas and the lack of sufficient meteorological stations and unevenly distribution of them, which bringing certain challenges to the study of meteorological elements, and resulting in incomplete mastery of meteorological elements in the region.Therefore, it is necessary to perform a study on the meteorological elements of the North Slope of the Central Kunlun Mountains.This study utilized meteorological data from nine meteorological stations at different altitudes on the northern slopes of the Central Kunlun Mountains in a consecutive year (August 2022 to July 2023) to investigate the spatial and temporal characteristics of near-surface meteorological elements at the altitude of 1.5 m in the mountainous areas in response to the gradient.The results show that: (1) The wind direction changed significantly at different altitudes, the wind speed increased with increase of the elevation, the metrological station at 1738~3044 m above sea level was affected by the valley wind, and two dominant "twin peaks type" were observed for the daily change of wind speed; (2) The temperature lapse rate (TLR) on the north slope of the Central Kunlun Mountains is lower than the standard atmospheric temperature lapse rate, and the TLRmean(mean temperature laspe rate), TLRmax(max temperature laspe rate) and TLRmin(min temperature laspe rate) were -0.56 ℃·(100m)-1, -0.60 ℃·(100m)-1 and -0.47 ℃·(100m)-1, respectively, with seasonal characteristics of steepness in summer and shallowness in winter; (3) There are several inversion temperature layers and inversion humidity layers at different altitudes, and the seasonal differences in the degree of inversion temperature and inversion humidity were large, which are manifested as the smallest intensity of inversion temperature and the larger intensity of inversion humidity in summer, the largest degree of inversion temperature and the smallest intensity of inversion humidity in winter, and the strongest inversion temperature and inversion humidity were found at the altitude between 1256 m and 1409 m; (4) The inverse temperature and inverse humidity under typical summer weather were greater on sunny days than that of on rainy days, and the maximum inverse temperature intensity on sunny days was equal to 4.32 times of the rainy days, while the range of variation of specific humidity on sunny days was greater than that on rainy days, and the intensity of inverse humidity was equal to 1.11 times of the rainy days; (5) The North Slope of the Middle Kunlun Mountains accounted for more than 86% of the total annual precipitation from April to September, the precipitation change gradient was more obvious with changes in altitude, and showed "increase - decrease - increase"trend, a obvious precipitation zone was found around 2800~3200 m.

参考文献

null
Blandford T R Humes K S Harshburger B J, et al, 2008.Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin[J].Journal of Applied Meteorology and Climatology47(1): 249-261.DOI: 10.1175/2007JAMC1565.1 .
null
Du M X Zhang M J Wang S J, et al, 2018.Near-surface air temperature lapse rates in Xinjiang, northwestern China[J].Theoretical and Applied Climatology131(3-4): 1221-1234.DOI: 10. 1007/s00704-017-2040-x .
null
Gheyret G Mohammat A Tang Z2020.Elevational patterns of temperature and humidity in the middle Tianshan Mountain area in Central Asia[J].Journal of Mountain Science17(2): 397-409.DOI: 10.1007/s11629-019-5481-0 .
null
Gruber S Hoelzle M Haeberli W2004.Rock‐wall temperatures in the Alps: modelling their topographic distribution and regional differences[J].Permafrost and Periglacial Processes15(3): 299-307.DOI: 10.1002/ppp.501 .
null
Guo X Y Wang L Tian L D2016.Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau[J].International Journal of Climatology36(4): 1901-1916.DOI: 10.1002/joc.4468 .
null
Heynen M Miles E Ragettli S, et al, 2016.Air temperature variability in a high-elevation Himalayan catchment[J].Annals of Glaciology57(71): 212-222.DOI: 10.3189/2016AoG71A076 .
null
Kattel D B Yao T D Panday P K2018.Near-surface air temperature lapse rate in a humid mountainous terrain on the southern slopes of the eastern Himalayas[J].Theoretical and Applied Climatology132(3-4): 1129-1141.DOI: 10.1007/s00704-017-2153-2 .
null
Kattel D B Yao T Yang K, et al, 2013.Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas[J].Theoretical and Applied Climatology113(3-4): 671-682.DOI: 10.1007/s00704-012-0816-6 .
null
Krstic M Cvjeticanin R Sviailagic J, et al, 2014.Climate-vegetation characteristics of Kopaonik mountain in Serbia[J].Carpathian Journal of Earth and Environmental Sciences9(3): 135-145.
null
Li X P Wang L Chen D L, et al, 2013.Near‐surface air temperature lapse rates in the mainland China during 1962-2011[J].Journal of Geophysical Research: Atmospheres118(14): 7505-7515.DOI: 10.1002/jgrd.50553 .
null
Lin C W Chang X L2018.Spatio-temporal variations of surface temperature lapse rate on Qilian mountains[J].Advances in Geosciences8(3): 691-698.DOI: 10.12677/AG.2018.83073 .
null
Marshall S J Miller K2020.Seasonal and interannual variability of melt-season albedo at Haig Glacier, Canadian Rocky Mountains[J].The Cryosphere14(10): 3249-3267.DOI: 10.5194/tc-14-3249-2020 .
null
Minder J R Mote P W Lundquist J D2010.Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains[J].Journal of Geophysical Research: Atmospheres115(D14): D14122.DOI: 10.1029/2009JD013493 .
null
Niu S T Sun M P Wang G Y, et al, 2023.Glacier change and its influencing factors in the northern part of the Kunlun Mountains[J].Remote Sensing15(16): 3986.DOI: 10.3390/rs15163986 .
null
Pepin N Bradley R S Diaz H F, et al, 2015.Elevation-dependent warming in mountain regions of the world[J].Nature Climate Change5(5): 424-430.DOI: 10.1038/NCLIMATE2563 .
null
Polson D Hegerl G C2017.Strengthening contrast between precipitation in tropical wet and dry regions[J].Geophysical Research Letters44(1): 365-373.DOI: 10.1002/2016GL071194 .
null
Shi J Cui L L Wen K M, et al, 2018.Trends in the consecutive days of temperature and precipitation extremes in China during 1961-2015[J].Environmental Research, (161): 381-391.DOI: 10. 1016/j.envres.2017.11.037 .
null
Shi Y F Shen Y P Kang E, et al, 2007.Recent and future climate change in northwest China[J].Climatic Change80(3-4): 379-393.DOI: 10.1007/s10584-006-9121-7 .
null
Sun C J Chen W Shen Y J2022.Unraveling the distribution patterns of near-surface temperature lapse rates in the Northwestern Kunlun Mountains[J].Journal of Mountain Science19(4): 1168-1181.DOI: 10.1007/s11629-021-6983-0 .
null
Tang Z Y Fang J Y2006.Temperature variation along the northern and southern slopes of Mt.Taibai, China[J].Agricultural and Forest Meteorology139(3-4): 200-207.DOI: 10.1016/j.agrformet.2006.07.001 .
null
Wang M Liu P X Qiao X M, et al, 2021.Spatio-temporal characteristics of dry-wet conditions and boundaries in five provinces of northwest China from 1960 to 2020[J].Atmosphere12(11): 1499.DOI: 10.3390/atmos12111499 .
null
Xu Y P Gao Y J1995.An analysis of water resource characteristics of the rivers in the northern slope of the Kunlun Mountains[J].Chinese Geographical Science5(4): 365-373.DOI: 10.1007/BF02664318 .
null
Zhang H Sun M P Yao X J, et al, 2021.Spatial-temporal distribution of tropospheric specific humidity in the arid region of northwest China[J].Atmosphere12(3): 349.DOI: 10.3390/atmos12030349 .
null
戴进, 赵奎锋, 董自鹏, 等, 2023.巴山西段米仓山北坡近地面气温垂直变化特征[J].高原气象42(4): 1055-1068.DOI: 10.7522/j.issn.1000-0534.2022.00061.Dai J
null
Zhou K F Dong Z P, et al, 2023.Vertical variation of near surface temperature on the Northern Slope of Micang Mountain in the Western Bashan Mountain[J].Plateau Meteorology42(4): 1055-1068.DOI: 10.7522/j.issn.1000-0534.2022.00061 .
null
杜一博, 张强, 王凯嘉, 等, 2018.西北干旱区夏季晴天、 阴天边界层结构及其陆面过程对比分析[J].高原气象37(1): 148-157.DOI: 10.7522/j.issn.1000-0534.2017.00042.Du Y B
null
Zhang Q Wang K J, et al, 2018.The northwest arid areas in summer sunny day, cloudy day boundary layer structure and land surface process comparison analysis[J].Plateau Meteorology37(1): 148-157.DOI: 10.7522/j.issn.1000-0534.2017.00042 .
null
方精云, 1992.我国气温直减率分布规律的研究[J].科学通报37(9): 817.DOI: 10.1360/csb1992-37-9-817.Fang J Y , 1992.Research on the distribution of direct temperature reduction rate in China[J].Chinese Science Bulletin, 37(9): 817.DOI: 10.1360/csb1992-37-9-817 .
null
付光祥, 何清, 王勇辉, 等, 2024.塔克拉玛干沙漠南缘近地层风温湿廓线与能量交换特征[J].干旱区地理47(1): 68-80.DOI: 10.12118/j.issn.1000-6060.2023.445.Fu G X
null
He Q Wang Y H, et al, 2024.Characteristics of wind, temperature, humidity profiles and energy exchange in the surface layer in the southern edge of Taklimakan Desert[J].Arid Land Geography47(1): 68-80.DOI: 10.12118/j.issn.1000-6060.2023.445 .
null
高吉喜, 史园莉, 张宏伟, 等, 2023.中国区域250米植被覆盖度数据集(2000-2022)[Z].国家青藏高原科学数据中心, DOI: 10.11888/Terre.tpdc.300330.Gao J X, Shi Y L, Zhang H W,et al, 2023.China regional 250m fractional vegetation cover data set (2000-2022)[Z].National Tibetan Plateau Data, DOI: 10.11888/Terre.tpdc.300330.
null
郭建平, 薛红喜, 马兆岩, 等, 2013.珠穆朗玛峰地区若干气象要素的垂直特征[J].高原气象32(6): 1568-1579.DOI: 10.7522/j.issn.1000-0534.2012.00152.Guo J P
null
Xue H X Ma Z Y, et al, 2013.Study on vertical structure of several meteorological elements in Mount Qomolangma Region[J].Plateau Meteorology32(6): 1568-1579.DOI: 10.7522/j.issn.1000-0534.2012.00152 .
null
韩兴胜, 2017.中昆仑山北坡降水量变化特征分析[J].人民长江48(s2): 85-88.DOI: 10.16232/j.cnki.1001-4179.2017.S2.023.Han X S , 2017.Analysis of precipitation variation characteristics on the northern slope of the Middle Kunlun Mountains[J].Yangtze River, 48(s2): 85-88.DOI: 10.16232/j.cnki. 1001-4179.2017.S2.023 .
null
金莉莉, 李振杰, 何清, 等, 2017.塔克拉玛干沙漠腹地人工绿地中心区域与边缘地带小气候[J].中国沙漠37(5): 986-996.DOI: 10.7522/j.issn.1000-694X.2016.00068.Jin L L
null
Li Z J He Q, et al, 2017.Microclimate over the center and edge areas of the artificial shelter forest land in Taklimakan Desert[J].Journal of Desert Research37(5): 986-996.DOI: 10.7522/j.issn.1000-694X.2016.00068 .
null
晋子振, 秦翔, 孙维君, 等, 2019.祁连山西段冰川区与非冰川区气温梯度年内变化特征[J].冰川冻土41(2): 282-292.DOI: 10.7522/j.issn.1000-0240.2019.0106.Jin Z Z
null
Qin X Sun W J, et al, 2019.Monthly variations of temperature gradient in glacierized and non-glacierized areas of the western Qilian Mountains[J].Journal of Glaciology and Geocryology41(2): 282-292.DOI: 10.7522/j.issn.1000-0240.2019.0106 .
null
罗伦, 旦增, 朱立平, 等, 2021.藏东南色季拉山气温和降水垂直梯度变化[J].高原气象40(1): 37-46.DOI: 10.7522/j.issn.1000-0534.2019.00123.Luo L
null
Dan Z Zhu L P, et al, 2021.Vertical gradient changes of temperature and precipitation in the Sygera Mountains, Southeastern Qinghai-Xizang Plateau[J].Plateau Meteorology40(1): 37-46.DOI: 10.7522/j.issn.1000-0534.2019.00123 .
null
毛东雷, 蔡富艳, 雷加强, 等, 2017.新疆策勒沙漠-荒漠-绿洲典型下垫面小气候空间变化分析[J].地理科学37(4): 630-640.DOI: 10.13249/j.cnki.sgs.2017.04.017.Mao D L
null
Cai F Y Lei J Q, et al, 2017.Spatial analysis on changes of microclimate in typical landscapes in desert-wilderness-oasis in Cele, Xinjiang[J].Scientia Geographica Sinica37(4): 630-640.DOI: 10.13249/j.cnki.sgs.2017.04.017 .
null
秦翔, 杨兴国, 李健, 等, 2013.珠穆朗玛峰北坡地区的气温分布及其垂直梯度分析[J].高原气象32(1): 1-8.DOI: 10.7522/j.issn.1000-0534.2012.00001.Xiang Q
null
Yang X G Li J, et al, 2013.Analyses on distribution and vertical gradient of air temperature on the North Slope of Mt.Qomolangma[J].Plateau Meteorology32(1): 1-8.DOI: 10.7522/j.issn.1000-0534.2012.00001 .
null
田杰, 王庆伟, 于大炮, 等, 2013.长白山北坡气温的垂直变化[J].干旱区资源与环境27(4): 65-69.DOI: 10.11676/qxxb1981.034.Tian J
null
Wang Q W Yu D P, et al, 2013.Air temperature variation along altitudinal gradient on the northern slope of Mt.Changbai, China[J].Journal of Arid Land Resources and Environment27(4): 65-69.DOI: 10.11676/qxxb1981.034 .
null
辛惠娟, 何元庆, 李宗省, 等, 2012.玉龙雪山东坡气温和降水梯度年内变化特征[J].地球科学(中国地质大学学报)37(z1): 188-194.DOI: 10.3799/dqkx.2012.S1.019.Xin H J
null
He Y Q Xing L Z, et al, 2012.Inter-annual variation of temperature and precipitation gradient at the Eastern Slope of Yulong Snow Mountain[J].Earth Science-Journal of China University of Geosciences37(z1): 188-194.DOI: 10.3799/dqkx.2012.S1.019 .
null
薛燕, 韩萍, 冯国华, 2003.半个世纪以来新疆降水和气温的变化趋势[J].干旱区研究20(2): 127-130.DOI: 10.13866/j.azr.2003.02.010.Xue Y
null
Han P Feng G H2003.Change trend of the precipitation and air temperature in Xinjiang since recent 50 years[J].Arid Zone Research20(2): 127-130.DOI: 10.13866/j.azr.2003.02.010 .
null
杨青, 雷加强, 魏文寿, 等, 2004.人工绿洲对夏季气候变化趋势的影响[J].生态学报24(12): 2728-2734.DOI: 10.3321/j.issn: 1000-0933.2004.12.008.Yang Q
null
Lei J Q Wei W S, et al, 2004.Effects of artificial oases on climate change trend[J].Acta Ecologica Sinica24(12): 2728-2734.DOI: 10.3321/j.issn: 1000-0933.2004.12.008 .
null
张俊, 李如琦, 李桉孛, 等, 2021.1970-2019年夏季南疆低空垂直速度与降水量时空变化特征[J].沙漠与绿洲气象15(05): 71-77.DOI: 10.12057/j.issn.1002-0799.2021.05.010.Zhang J
null
Li R Q Li A B, et al, 2021.The characteristics of the spatial and temporal variation of summer vertical velocity in lower layer and precipitation of Southern Xinjiang in the past 50 years[J].Desert and Oasis Meteorology15(05): 71-77.DOI: 10.12057/j.issn.1002-0799.2021.05.010 .
null
张强, 黄荣辉, 王胜, 2011.浅论西北干旱区陆面过程和大气边界层对区域天气气候的特殊作用[J].干旱气象29(2): 133-136.DOI: 10.3969/j.issn.1006-7639.2011.02.001.Zhang Q
null
Huang R H Wang S2011.Discussion about special function of land surface process and atmospheric boundary on regional climate in arid area of Northwest China[J].Arid Meteorology29(2): 133-136.DOI: 10.3969/j.issn.1006-7639.2011.02.001 .
文章导航

/