2022 -2023年中昆仑山北坡不同海拔气象要素梯度对比分析
收稿日期: 2024-01-22
修回日期: 2024-05-06
网络出版日期: 2024-05-06
基金资助
国家自然科学基金项目(42030612); 第二次青藏高原综合科学考察研究项目(2019QZKK010206); 第三次新疆综合科学考察项目(2021xjkk030501)
Comparative Analysis of the Gradient of Meteorological Elements at Different Elevations of the North Slope of the Middle Kunlun Mountains from 2022 to 2023
Received date: 2024-01-22
Revised date: 2024-05-06
Online published: 2024-05-06
中昆仑山北坡既包含绿洲、 荒漠及其过渡带等不同下垫面, 又囊括沙漠和高原气候, 由北向南生态环境差异大, 气候变化多端, 然而由于山地地区自然环境恶劣, 气象台站较少且分布不均, 给该地区气象要素的研究带来了一定挑战, 致使对该区域气象要素的掌握尚不全面, 因此开展关于中昆仑山北坡气象要素的研究十分有必要。本文利用中昆仑山北坡9个不同海拔气象台站连续一年(2022年8月至2023年7月)的气象要素数据, 探究该山区1.5 m高度处近地面气象要素随海拔梯度的时空变化特征。结果表明: (1)不同海拔风向变化显著, 风速随海拔升高而增大, 海拔1738~3044 m的站点受山谷风影响, 存在两个主导风向且风速日变化呈“双峰型”; (2)中昆仑山北坡的气温垂直递减率(Temperature lapse rate, 以下简称TLR)均低于标准大气气温直减率, 平均气温垂直递减率TLR mean、 最高气温垂直递减率TLR max和最低气温垂直递减率TLR min分别为-0.56 ℃·(100m)-1、 -0.60 ℃·(100m)-1和-0.47 ℃·(100m)-1, 季节性特征表现为夏季陡, 冬季浅; (3)不同海拔存在多个逆温层和逆湿层, 逆温和逆湿强度的季节差异较大, 表现为夏季逆温强度最小, 逆湿强度较大, 冬季逆温强度最大, 逆湿强度最小, 最强逆温和逆湿均出现在海拔1256~1409 m; (4)夏季典型天气下晴天的逆温逆湿均大于阴雨天, 晴天最大逆温强度是阴雨天的4.32倍, 晴天比湿变化范围大于阴雨天, 逆湿强度是阴雨天的1.11倍; (5)中昆仑山北坡4 -9月占全年总降水的86%以上, 随海拔升高降水梯度变化明显, 表现为“增多-减少-增多”的趋势, 在2800~3200 m存在一个明显降水带。
徐月月 , 何清 , 毛东雷 , 付光祥 , 李晶晶 , 王永强 , 张乾 . 2022 -2023年中昆仑山北坡不同海拔气象要素梯度对比分析[J]. 高原气象, 2025 , 44(1) : 224 -239 . DOI: 10.7522/j.issn.1000-0534.2024.00064
The north slope of the Middle Kunlun Mountains contains different sub-surfaces such as oases, deserts and their transition zones, as well as deserts and plateau climates, with great ecological differences and climate variations from north to south.However, the poor natural environment of the mountainous areas and the lack of sufficient meteorological stations and unevenly distribution of them, which bringing certain challenges to the study of meteorological elements, and resulting in incomplete mastery of meteorological elements in the region.Therefore, it is necessary to perform a study on the meteorological elements of the North Slope of the Central Kunlun Mountains.This study utilized meteorological data from nine meteorological stations at different altitudes on the northern slopes of the Central Kunlun Mountains in a consecutive year (August 2022 to July 2023) to investigate the spatial and temporal characteristics of near-surface meteorological elements at the altitude of 1.5 m in the mountainous areas in response to the gradient.The results show that: (1) The wind direction changed significantly at different altitudes, the wind speed increased with increase of the elevation, the metrological station at 1738~3044 m above sea level was affected by the valley wind, and two dominant "twin peaks type" were observed for the daily change of wind speed; (2) The temperature lapse rate (TLR) on the north slope of the Central Kunlun Mountains is lower than the standard atmospheric temperature lapse rate, and the TLRmean(mean temperature laspe rate), TLRmax(max temperature laspe rate) and TLRmin(min temperature laspe rate) were -0.56 ℃·(100m)-1, -0.60 ℃·(100m)-1 and -0.47 ℃·(100m)-1, respectively, with seasonal characteristics of steepness in summer and shallowness in winter; (3) There are several inversion temperature layers and inversion humidity layers at different altitudes, and the seasonal differences in the degree of inversion temperature and inversion humidity were large, which are manifested as the smallest intensity of inversion temperature and the larger intensity of inversion humidity in summer, the largest degree of inversion temperature and the smallest intensity of inversion humidity in winter, and the strongest inversion temperature and inversion humidity were found at the altitude between 1256 m and 1409 m; (4) The inverse temperature and inverse humidity under typical summer weather were greater on sunny days than that of on rainy days, and the maximum inverse temperature intensity on sunny days was equal to 4.32 times of the rainy days, while the range of variation of specific humidity on sunny days was greater than that on rainy days, and the intensity of inverse humidity was equal to 1.11 times of the rainy days; (5) The North Slope of the Middle Kunlun Mountains accounted for more than 86% of the total annual precipitation from April to September, the precipitation change gradient was more obvious with changes in altitude, and showed "increase - decrease - increase"trend, a obvious precipitation zone was found around 2800~3200 m.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 戴进, 赵奎锋, 董自鹏, 等, 2023.巴山西段米仓山北坡近地面气温垂直变化特征[J].高原气象, 42(4): 1055-1068.DOI: 10.7522/j.issn.1000-0534.2022.00061.Dai J , |
null | |
null | 杜一博, 张强, 王凯嘉, 等, 2018.西北干旱区夏季晴天、 阴天边界层结构及其陆面过程对比分析[J].高原气象, 37(1): 148-157.DOI: 10.7522/j.issn.1000-0534.2017.00042.Du Y B , |
null | |
null | 方精云, 1992.我国气温直减率分布规律的研究[J].科学通报, 37(9): 817.DOI: 10.1360/csb1992-37-9-817.Fang J Y , 1992.Research on the distribution of direct temperature reduction rate in China[J].Chinese Science Bulletin, 37(9): 817.DOI: 10.1360/csb1992-37-9-817 . |
null | 付光祥, 何清, 王勇辉, 等, 2024.塔克拉玛干沙漠南缘近地层风温湿廓线与能量交换特征[J].干旱区地理, 47(1): 68-80.DOI: 10.12118/j.issn.1000-6060.2023.445.Fu G X , |
null | |
null | 高吉喜, 史园莉, 张宏伟, 等, 2023.中国区域250米植被覆盖度数据集(2000-2022)[Z].国家青藏高原科学数据中心, DOI: 10.11888/Terre.tpdc.300330.Gao J X, Shi Y L, Zhang H W,et al, 2023.China regional 250m fractional vegetation cover data set (2000-2022)[Z].National Tibetan Plateau Data, DOI: 10.11888/Terre.tpdc.300330. |
null | 郭建平, 薛红喜, 马兆岩, 等, 2013.珠穆朗玛峰地区若干气象要素的垂直特征[J].高原气象, 32(6): 1568-1579.DOI: 10.7522/j.issn.1000-0534.2012.00152.Guo J P , |
null | |
null | 韩兴胜, 2017.中昆仑山北坡降水量变化特征分析[J].人民长江, 48(s2): 85-88.DOI: 10.16232/j.cnki.1001-4179.2017.S2.023.Han X S , 2017.Analysis of precipitation variation characteristics on the northern slope of the Middle Kunlun Mountains[J].Yangtze River, 48(s2): 85-88.DOI: 10.16232/j.cnki. 1001-4179.2017.S2.023 . |
null | 金莉莉, 李振杰, 何清, 等, 2017.塔克拉玛干沙漠腹地人工绿地中心区域与边缘地带小气候[J].中国沙漠, 37(5): 986-996.DOI: 10.7522/j.issn.1000-694X.2016.00068.Jin L L , |
null | |
null | 晋子振, 秦翔, 孙维君, 等, 2019.祁连山西段冰川区与非冰川区气温梯度年内变化特征[J].冰川冻土, 41(2): 282-292.DOI: 10.7522/j.issn.1000-0240.2019.0106.Jin Z Z , |
null | |
null | 罗伦, 旦增, 朱立平, 等, 2021.藏东南色季拉山气温和降水垂直梯度变化[J].高原气象, 40(1): 37-46.DOI: 10.7522/j.issn.1000-0534.2019.00123.Luo L , |
null | |
null | 毛东雷, 蔡富艳, 雷加强, 等, 2017.新疆策勒沙漠-荒漠-绿洲典型下垫面小气候空间变化分析[J].地理科学, 37(4): 630-640.DOI: 10.13249/j.cnki.sgs.2017.04.017.Mao D L , |
null | |
null | 秦翔, 杨兴国, 李健, 等, 2013.珠穆朗玛峰北坡地区的气温分布及其垂直梯度分析[J].高原气象, 32(1): 1-8.DOI: 10.7522/j.issn.1000-0534.2012.00001.Xiang Q , |
null | |
null | |
null | |
null | 辛惠娟, 何元庆, 李宗省, 等, 2012.玉龙雪山东坡气温和降水梯度年内变化特征[J].地球科学(中国地质大学学报), 37(z1): 188-194.DOI: 10.3799/dqkx.2012.S1.019.Xin H J , |
null | |
null | 薛燕, 韩萍, 冯国华, 2003.半个世纪以来新疆降水和气温的变化趋势[J].干旱区研究, 20(2): 127-130.DOI: 10.13866/j.azr.2003.02.010.Xue Y , |
null | |
null | 杨青, 雷加强, 魏文寿, 等, 2004.人工绿洲对夏季气候变化趋势的影响[J].生态学报, 24(12): 2728-2734.DOI: 10.3321/j.issn: 1000-0933.2004.12.008.Yang Q , |
null | |
null | 张俊, 李如琦, 李桉孛, 等, 2021.1970-2019年夏季南疆低空垂直速度与降水量时空变化特征[J].沙漠与绿洲气象, 15(05): 71-77.DOI: 10.12057/j.issn.1002-0799.2021.05.010.Zhang J , |
null | |
null | 张强, 黄荣辉, 王胜, 2011.浅论西北干旱区陆面过程和大气边界层对区域天气气候的特殊作用[J].干旱气象, 29(2): 133-136.DOI: 10.3969/j.issn.1006-7639.2011.02.001.Zhang Q , |
null |
/
〈 |
|
〉 |