WRF模式多参数化方案对东南亚低纬高原陆气耦合强度的模拟评估
收稿日期: 2024-01-17
修回日期: 2024-05-28
网络出版日期: 2024-05-28
基金资助
国家自然科学基金项目(42065002); 云南省应用基础研究计划项目(202401AT070447)
Evaluation of Land-atmosphere Coupling Strength in Low-latitude Highland of Southeast Asia by WRF Model Parameterization Schemes
Received date: 2024-01-17
Revised date: 2024-05-28
Online published: 2024-05-28
东南亚低纬高原是全球陆气耦合的热点地区之一, 其陆气相互作用对气候、 水文和环境均具有重要的影响。本研究采用均匀抽样方法, 结合WRF模式中多参数化方案, 开展了48组数值模拟试验, 通过优选参数化方案组合, 对该地区陆气耦合强度及其相关变量进行了模拟评估。研究表明: (1)从48组模拟试验集合中可发现, 对于近地面或地表的气温、 比湿、 向下长波、 向上长波和土壤温度, 集合模拟能力较好; 对于近地面或地表的风速、 降水、 感热通量、 潜热通量、 向下短波和向上短波, 集合模拟可较好反映各变量的变化特征; 但是对于地表的土壤湿度, 集合模拟能力较差。对于近地面或地表的风速、 降水、 潜热通量、 向下短波、 向上短波、 土壤温度和土壤湿度, 不同组合间模拟差异较小; 但是对于地表的感热通量, 不同组合间模拟差异较大。(2)根据等权重平均Taylor评分获得的最优参数化方案组合可以提升对于近地面或地表的气温、 比湿、 向下短波、 向上短波、 向下长波、 向上长波和土壤温度的模拟能力, 但对于近地面或地表的风速、 降水、 感热通量、 潜热通量和表层土壤湿度提升效果不明显。(3)最优参数化方案组合可以合理地反映陆气耦合的空间特征和时间变化, 但模拟的耦合强度较参考值偏弱, 主要与潜热通量和向下短波辐射模拟能力较差有关。
王秀智 , 杨启东 , 何帅辰 , 石紫琳 , 吕柄溶 . WRF模式多参数化方案对东南亚低纬高原陆气耦合强度的模拟评估[J]. 高原气象, 2024 , 43(4) : 995 -1010 . DOI: 10.7522/j.issn.1000-0534.2024.00070
Southeast Asia's Low-Latitude Highland (LLH) is one of the hotspots of land-atmosphere coupling in the world, with its land-atmosphere interaction has significant impacts on climate, hydrology and environment.This study employs Uniform Design (UD) method to conduct 48 groups of simulation using different parameterization schemes of Weather Research and Forecasting (WRF) model.By optimizing the parameterization schemes, the variables related to land-atmosphere interaction in this area are simulated and evaluated.The findings are as follows: (1) The ensemble of 48 simulation groups demonstrates good performance for near-surface air temperature, near-surface specific humidity, surface downward longwave radiation, surface upward longwave radiation and surface soil temperature, with average Taylor Skill Score (TSS) values exceeding 0.8; for near-surface wind speed, precipitation, surface sensible heat flux, surface latent heat flux, surface downward shortwave radiation and surface upward shortwave radiation, the ensemble simulation can adequately capture the characteristics of these variables, with average TSS values ranging between 0.4 and 0.8; but for surface soil moisture, the ensemble simulation performance is poor, with average TSS values less than 0.4.The variability among different simulation groups is minimal for near-surface wind speed, precipitation, surface latent heat flux, surface downward shortwave radiation, surface upward shortwave radiation, surface soil temperature and surface soil moisture (TSS range < 0.2); but for the surface sensible heat flux, the variability among different simulation groups is significant (TSS range > 0.3).(2) The optimal parameterization schemes based on equal-weighted averaged TSS can enhance simulation accuracy for near-surface air temperature, near-surface specific humidity, surface downward longwave radiation, surface upward longwave radiation and surface soil temperature, with correlation coefficients exceeding 0.9 and minor deviations from reference values.However, this optimization could not significantly improve simulation performance for near-surface wind speed, precipitation, surface sensible heat flux, surface latent heat flux and surface soil moisture, where deviations remain substantial.(3) The optimal parameterization schemes can reasonably capture the spatial and temporal features of land-atmosphere coupling, showing strong coupling strength in northeast and southwest LLH, with temporal correlation coefficient greater than 0.9.Nonetheless, the simulated values of coupling strength is generally weaker than the reference values, primarily due to poor simulation performance of surface latent heat flux and surface downward shortwave radiation.
Key words: land-atmosphere coupling; WRF model; low-latitude highland; uniform design
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 葛元凯, 赵龙龙, 陈劲松, 等, 2023.1983-2020年西南地区气象干旱时空演变趋势及干旱事件识别[J].生态环境学报, 32(5): 920-932.DOI:10.16258/j.cnki.1674-5906.2023.05.010.Ge Y K , |
null | |
null | 姜琪, 罗斯琼, 李明, 2022.不同初始场及陆面方案对青藏高原中东部积雪消融过程的模拟研究[J].高原气象, 41(2): 430-443.DOI:10.7522/j.issn.1000-0534.2021.00115.Jiang Q , |
null | |
null | 金燕, 况雪源, 晏红明, 等, 2018.近55 年来云南区域性干旱事件的分布特征和变化趋势研究[J].气象, 44(9): 1169-1178. |
null | |
null | 蓝天, 霍利微, 王冀, 等, 2021.2011年夏季西南极端干旱事件及其成因[J].大气科学学报, 44(6): 927-937. |
null | |
null | 李崇银, 刘会荣, 宋洁, 2013.2009/2010 年冬季云南干旱的进一步研究——前期土壤湿度影响的数值模拟[J].气候与环境研究, 18(5): 551-561. |
null | |
null | 秦剑, 琚建华, 解明恩, 1997.低纬高原天气气候[M].北京: 气象出版社. |
null | |
null | 尚程鹏, 吴通华, 姚济敏, 等, 2022.不同互补模型对青藏高原多年冻土区地表实际蒸散发的模拟能力评估[J].高原气象, 41(3): 541-557.DOI:10.7522/j.issn.1000-0534.2021.00054.Shang C P , |
null | |
null | 孙昭萱, 张强, 孙蕊, 等, 2022.2022年西南地区极端高温干旱特征及其主要影响[J].干旱气象, 40(5): 764-770. |
null | |
null | 杨鹏武, 王学锋, 王麟, 等, 2016.WRF_TopoWind模式对中国低纬高原高山风速模拟的适用性研究[J].云南大学学报(自然科学版), 38(5): 766-772.DOI:10.7540/j.ynu.20160060.Yang P W , |
null | |
null | 赵凤君, 舒立福, 田晓瑞, 等, 2009.1957-2007年云南省森林火险变化[J].生态学杂志, 28(11): 2333.Zhao F J, Shu L F, Tian X R, et al, 2009.Change trends of forest fire danger in Yunnan Province in 1957-2007[J].Chinese Journal of Ecology, 28(11): 2333. |
null | 郑建萌, 黄玮, 陈艳, 等, 2017.云南极端气象干旱指标的研究[J].高原气象, 36(4): 1039-1051.DOI:10.7522/j.issn.1000-0534.2016.00067.Zheng J M , |
null |
/
〈 |
|
〉 |