收稿日期: 2022-12-07
修回日期: 2023-05-31
网络出版日期: 2024-07-25
基金资助
云南省科技厅重点研发计划项目(202203AC100005); 云南省气象局创新团队项目(2022CX05); 云南省自然科学基金项目(202302AN360006); 中国气象局创新发展专项(CXFZ2023J047)
Effects of Climate Change and Human Activities on Net Primary Productivity in Yunnan Province
Received date: 2022-12-07
Revised date: 2023-05-31
Online published: 2024-07-25
深入理解气候变化和人类活动对植被变化的驱动机制对于生态保护和可持续发展有重要的科学意义。本研究基于MOD17A3/NPP产品数据, 采用线性趋势分析、 Mann-Kendall显著性分析、 Hurst指数和二阶偏相关分析, 探讨云南省2001 -2021年植被NPP的时空分布特征和未来持续性以及植被NPP与气候条件的关系。采用偏导趋势残差法分离和量化气候变化和人类活动对植被NPP的影响。结果发现, 空间上, 2001 -2021年云南植被NPP年均值南高北低。不同植被类型NPP值(单位: gC?m-2)从大到小依次为: 林地(1106.7 gC?m-2)、 灌木(964.4 gC?m-2)、 农田(946.6 gC?m-2)和草地(878.8 gC?m-2)。植被NPP随海拔上升先增后降。 (2)在研究时段内, 植被NPP年均值为1020.8±30.7 gC?m-2, 最小值和最大值分别出现在2010年(950.0)和2019年(1062.1)。植被NPP呈显著增加趋势, 增加率为2.1 gC?m-2?a-1(p<0.05), 增加和显著增加的面积分别占研究区总面积70.0%和26.3%。不同植被类型NPP的增加率(单位: gC?m-2?a-1)从大到小依次为: 草地(4.1 gC?m-2?a-1)、 农田(3.5 gC?m-2?a-1)、 灌木(2.8 gC?m-2?a-1)和林地(1.3 gC?m-2?a-1)。Hurst指数均值为0.60, 植被NPP未来变化趋势持续增加和由减少转为增加的面积占总面积的55.5%和9.3%, 表明大部分地区植被NPP未来仍将持续增加。(3)2001 -2021年云南省平均气温显著增加, 降水和太阳辐射波动减少。大部分地区植被NPP与气温、 降水和太阳辐射正相关, 气温对植被NPP的影响大于降水和太阳辐射。(4)气候变化和人类活动对云南植被NPP变化的相对贡献率分别为27.1%和72.9%, 正贡献的面积分别占研究区总面积的59.4%和64.6%, 相对贡献率>60%的面积占比分别为12.7%和73.4%。大部分地区人类活动对植被NPP的影响大于气候变化。云南植被改善主要受气候变化和人类活动的共同作用的影响, 植被退化则主要受人类活动主导和两者共同作用的影响, 生态保护、 恢复工程对云南植被改善有着显著的促进作用。
徐虹 , 程晋昕 , 何雨芩 , 王玉尤婷 , 张茂松 . 气候变化和人类活动对云南省植被净初级生产力的影响[J]. 高原气象, 2024 , 43(4) : 1064 -1075 . DOI: 10.7522/j.issn.1000-0534.2023.00047
Net primary productivity(NPP) directly and truly reflected the dynamic changing process of terrestrial vegetation ecosystem.Understanding the driving mechanism of climate change and human activities on vegetation change was of great scientific significance to ecological protection and sustainable development.Based on MOD17A3/NPP product, using linear trend analysis, Mann-Kendall significance analysis, Hurst index and partial correlation analysis, the temporal and spatial distribution characteristics of vegetation NPP in Yunnan Province from 2001 to 2021, the future sustainability and the relationship between vegetation NPP and meteorological conditions were discussed.Residual analysis used to quantitatively assess the relative contributions and combined action of climate change and human activities to the vegetation NPP.The result as follow: (1)Spatially, the annual mean NPP value of Yunnan vegetation from 2001 to 2021 was high in the south and low in the north.The order of values from the high to low was woodland (1106.7 gC?m-2), shrub (964.4 gC?m-2), agricultural land (946.6 gC?m-2) and grassland (878.8 gC?m-2) in different vegetation types.The vegetation NPP increased and then decreased with increasing altitude.(2)During the study period the annual mean vegetation NPP was 1020.8 ± 30.7 gC?m-2, with minimum and maximum values occurring in 2010 (950.0 gC?m-2) and 2019 (1062.1 gC?m-2), respectively.The vegetation NPP showed a significant increase with an increase rate of 2.1 gC?m-2?a-1 (p<0.05).The increasing and significantly increasing areas accounted for 70.0% and 26.3% of the total area of the study area, respectively.The vegetation NPP of different vegetation types showed a similar variation trend.The increasing rates showed grassland (4.1 gC?m-2?a-1)> farmland (3.5 gC?m-2?a-1)> shrub (2.8 gC?m-2?a-1)>forestland (1.3 gC?m-2?a-1).The average value of the Hurst index was 0.60.The proportion of the area that would continue to increase and change from decrease to increase was 55.5% and 9.3%, respectively.This indicated that the vegetation NPP would continue to increase in most areas in the future.(3)The average temperature in Yunnan Province showed a significant increase from 2001 to 2021, while precipitation and solar radiation showed a fluctuating decrease.These climatic factors positively correlated with vegetation NPP in most areas, and the effect of temperature on vegetation NPP was greater than that of precipitation and solar radiation.(4) The relative contribution rates of climate change and human activities to vegetation NPP change in Yunnan were 27.1% and 72.9%, respectively, with positive contributions accounting for 59.4% and 64.6% of the total area of the study area, and relative contribution rate greater than 60% accounting for 12.7% and 73.4% of the area, respectively.The impact of human activities on vegetation NPP was greater than that of climate change in most areas.The vegetation improvement in Yunnan was mainly caused by the combined effect of climate change and human activities, while the degradation was mainly caused by the human activities and the combined effect.The ecological protection and restoration projects had a significant contribution to the improvement of vegetation NPP in Yunnan.
Key words: Yunnan; climate change; human activities; net primary productivity(NPP)
null | |
null | |
null | |
null | |
null | 鲍艳, 王玉琦, 南素兰, 等, 2023.青藏高原植被对未来气候变暖的反馈[J].高原气象, 42(3): 553-563.DOI: 10.7522/j.issn. 1000-0534.2021.00109.Bao Y , |
null | |
null | 曾觉民, 2018.云南自然森林分类系统及地理分布研究[J].西南林业大学学报(自然科学), 38(6): 1-18, 231. |
null | |
null | 陈成, 杨栋淏, 王建雄, 等, 2022.滇西南植被覆盖度动态变化特征及其驱动力分析[J].水土保持研究, 29(4): 198-206.DOI: 10.13869/j.cnki.rswc.2022.04.034.Chen C , |
null | |
null | 方精云, 柯金虎, 唐志尧, 等, 2001.生物生产力的“4P”概念、估算及其相互关系[J].植物生态学报, 25(4): 414-419. |
null | |
null | 冯婉, 谢世友, 2022.长江流域片2000-2015年植被NPP时空特征及影响因子探测[J].水土保持研究, 29(1): 176-183.DOI: 10.13869/j.cnki.rswc.2022.01.019.Feng W , |
null | |
null | 付晓, 张煜星, 王雪军, 2022.2060年前我国森林生物量碳库及碳汇潜力预测[J].林业科学, 58(2): 32-41. |
null | |
null | 国家林业和草原局, 2019.中国森林资源报告(2014-2018)[M].北京: 中国林业出版社.State Forestry and Grassland Administration, 2019.Report on China's Forest Resources (2014-2018)[M].Beijing: China Forestry Publishing House. |
null | 何宏昌, 马炳鑫, 靖娟利, 等, 2022.近20 年西南喀斯特地区植被NPP时空变化及自然因素地理探测[J].水土保持研究, 29(3): 172-178, 188.DOI: 10.13869/j.cnki.rswc.2022.03.017.He H C , |
null | |
null | 何云玲, 张一平, 2006.云南省自然植被净初级生产力的时空分布特征[J].山地学报, 24(2): 193-201. |
null | |
null | 和春兰, 陈超, 许林艳, 2021.澜沧江下游流域植被净初级生产力(NPP)时空变化及其驱动因素分析[J].云南地理环境研究, 33(3): 66-74, 77. |
null | |
null | 焦珂伟, 高江波, 吴绍洪, 等, 2018.植被活动对气候变化的响应过程研究进展[J].生态学报, 38(6): 2229-2238. |
null | |
null | 焦文慧, 张勃, 马彬, 等, 2021.近58 年华北地区初、终霜日及无霜期变化特征分析[J].高原气象, 40(2): 343-352.DOI: 10. 7522/j.issn.1000-0534.2020.00085.Jiao W H , |
null | |
null | 金凯, 王飞, 韩剑桥, 等, 2020.1982-2015年中国气候变化和人类活动对植被NDVI变化的影响[J].地理学报, 75(5): 961-974. |
null | |
null | 柯金虎, 朴世龙, 方精云, 2003.长江流域植被净第一性生产力及其时空格局研究[J].植物生态学报, 27(6): 764-770. |
null | |
null | 李登科, 王钊, 2022.气候变化和人类活动对陕西省植被NPP影响的定量分析[J].生态环境学报, 31(6): 1071-1079.DOI: 10.16258/j.cnki.1674-5906.2022.06.001.Li D K , |
null | |
null | 刘刚才, 纪中华, 方海东, 等, 2011.干热河谷退化生态系统典型恢复模式的生态响应与评价[M].北京: 科学出版社.Liu G C, Ji Z H, Fang H D, et al, 2011.Ecological response and evaluation of typical restoration models of degraded ecosystems in dry-hot river valleys[M].Beijing: Science Press. |
null | 刘婧, 汤峰, 张贵军, 张蓬涛, 2021.2000-2015年滦河流域植被净初级生产力时空分布特征及其驱动因子分析[J].中国生态农业学报(中英文), 29(4): 659-671.DOI: 10.13930/j.cnki.cjea. 200701.Liu J , |
null | |
null | 刘文杰, 2000.西双版纳近40年气候变化对自然植被净第一性生产力的影响[J].山地学报, 18(4): 296-300.DOI: 10.16089/j.cnki.1008-2786.2000.04.002.Liu W J , 2000.Impact of climatic variation on net primary productivity of natural vegetation in Xishuangbanna in recent 40 years[J].Mountain Research, 18(4): 296-300.DOI: 10.16089/j.cnki.1008-2786.2000.04.002 . |
null | 刘泽, 陈建平, 2021.北京植被时空变化与气候因子相关性[J].地质通报, 40(12): 2159-2166. |
null | |
null | 马炳鑫, 靖娟利, 徐勇, 等, 2021.2000-2019年滇黔桂岩溶区植被NPP时空变化及与气候变化的关系研究[J].生态环境学报, 30(12): 2285-2293.DOI: 10.16258/j.cnki.1674-5906.2021. 12.002.Ma B X , |
null | |
null | 马启民, 贾晓鹏, 王海兵, 等, 2019.气候和人为因素对植被变化影响的评价方法综述[J].中国沙漠, 39(6): 48-55. |
null | |
null | 茆杨, 蒋勇军, 张彩云, 等, 2022.近20 年来西南地区植被净初级生产力时空变化与影响因素及其对生态工程响应[J].生态学报, 42(7): 2878-2890. |
null | |
null | 秦瑞, 周瑞伍, 彭明春, 等, 2014.CASA模型在金沙江流域(云南部分)NPP研究中的应用[J].山地学报, 32(6): 698-705.DOI: 10.16089/j.cnki.1008-2786.2014.06.025.Qin R , |
null | |
null | 石智宇, 王雅婷, 赵清, 等, 2022.2001-2020年中国植被净初级生产力时空变化及其驱动机制分析[J].生态环境学报, 31(11): 2111-2123.DOI: 10.16258/j.cnki.1674-5906.2022.11.002.Shi Z Y , |
null | |
null | 孙应龙, 钱拴, 延昊, 等, 2019.2000-2018年云南省典型矿区植被生态时空变化特征—以临沧市为例[J].生态环境学报, 28(12): 2381-2389.DOI: 10.16258/j.cnki.1674-5906. 2019.12.010.Sun Y L , |
null | |
null | 孙治娟, 谢世友, 2021.基于地理探测器的云南省净初级生产力时空演变及因子探测[J].生态学杂志, 40(12): 3836-3848.DOI: 10.13292/j.1000-4890.202111.033.Sun Z J , |
null | |
null | 田智慧, 张丹丹, 赫晓慧, 等, 2019.2000-2015年黄河流域植被净初级生产力时空变化特征及其驱动因子[J].水土保持研究, 26(2): 255-262.DOI: 10.13869/j.cnki.rswc.2019.02.037.Tian Z H , |
null | |
null | 王金杰, 赵安周, 胡小枫, 2021.京津冀植被净初级生产力时空分布及自然驱动因子分析[J].生态环境学报, 30(6): 11581167.DOI: 10.16258/j.cnki.1674-5906.2021.06.006.Wang J J , |
null | |
null | 王军邦, 杨屹涵, 左婵, 等, 2021.气候变化和人类活动对中国陆地生态系统总初级生产力的影响厘定研究[J].生态学报, 41(18): 7085-7099. |
null | |
null | 王淑静, 赖佩玉, 郝斌飞, 等, 2021.西南地区2001-2019年森林损失特征遥感监测与时空分析[J].遥感技术与应用, 36(3): 552-563. |
null | |
null | 吴普侠, 汪晓珍, 吴建召, 等, 2022.中国退耕还林工程固碳现状及固碳潜力估算[J].水土保持学报, 36(4): 342-349.DOI: 10.13870/j.cnki.stbcxb.2022.04.042.Wu P X , |
null | |
null | 谢平, 陈广才, 雷红富, 2009.基于Hurst系数的水文变异分析方法[J].应用基础与工程科学学报, 17(1): 32-39. |
null | |
null | 许端阳, 康相武, 刘志丽, 等, 2009.气候变化和人类活动在鄂尔多斯地区沙漠化过程中的相对作用研究[J].中国科学(地球科学), 39(4): 516-528. |
null | |
null | 许玉凤, 张永雷, 潘网生, 2018.云贵高原植被净初级生产力(NPP)时空格局动态变化[J].环境与可持续发展, 43(1): 96-99.DOI: 10.19758/j.cnki.issn1673-288x.2018.01.024.Xu Y F , |
null | |
null | 闫文波, 何云玲, 余岚, 等, 2021.干旱对云南省植被净初级生产力的影响研究[J].云南大学学报(自然科学版), 43(4): 736-745. |
null | |
null | 杨元合, 石岳, 孙文娟, 等, 2022.中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J].中国科学(生命科学), 52(4): 534-574. |
null | |
null | 张强, 邹旭恺, 陈鲜艳, 等, 2022.考虑多尺度和蒸散影响的新干旱指数研究—以云南为例[J].高原气象, 41(4): 909-920.DOI: 10.7522/j.issn.1000-0534.2021.00026.Zhang Q , |
null | |
null | 张心茹, 曹茜, 季舒平, 等, 2022.气候变化和人类活动对黄河三角洲植被动态变化的影响[J].环境科学学报, 42(1): 56-69.DOI: 10.13671/j.hjkxxb.2021.0492.Zhang X R , |
null | |
null | 张鑫彤, 吴秀芹, 2021.基于CASA模型的2005-2019年云南断陷盆地NPP时空变化研究[J].地球学报, 42(3): 426-434. |
null | |
null | 张颖, 章超斌, 王钊齐, 等, 2017.气候变化与人为活动对三江源草地生产力影响的定量研究[J].草业学报, 26(5): 1-14. |
null | |
null | 赵慧芳, 曹晓云, 2022.三江源国家公园植被覆盖时空变化及其气候驱动因素[J].高原气象, 41(2): 328-337.DOI: 10.7522/j.issn.1000-0534.2021.00091.Zhao H F , |
null | |
null | 赵倩倩, 张京朋, 赵天保, 等, 2021.2000年以来中国区域植被变化及其对气候变化的响应[J].高原气象, 40(2): 292-301.DOI: 10.7522/j.issn.1000-0534.2020.00025.Zhao Q Q , |
null | |
null | 周瑞伍, 彭明春, 张一平, 2017.云南主要森林植被碳储量及固碳潜力模拟研究[J].云南大学学报(自然科学版), 39(6): 1089-1103. |
null | |
null | 周妍妍, 朱敏翔, 郭晓娟, 等, 2019.疏勒河流域气候变化和人类活动对植被NPP的相对影响评价[J].生态学报, 39(14): 5127-5137. |
null |
/
〈 |
|
〉 |