论文

区域海气耦合模式WON在东南亚低纬高原一次强降水事件模拟中的应用

  • 桂术 ,
  • 曹杰 ,
  • 杨若文 ,
  • 李蕊
展开
  • 1. 云南省大湄公河次区域气象灾害与气候资源重点实验室,云南大学,云南 昆明 650091
    2. 气象灾害预报预警与评估协同创新中心,江苏 南京 210044
    3. 云南省气候中心,云南 昆明 650034

桂术(1985 -), 男, 云南人, 副教授, 主要从事海气相互作用和气候变化机理研究. E-mail:

收稿日期: 2022-11-23

  修回日期: 2023-06-21

  网络出版日期: 2024-07-25

基金资助

国家自然科学基金项目(42030603)

Application of the Regional Air-sea Coupled Model WON to the Simulation of a Heavy Precipitation Event over the Low Latitude Highland in Southeast Asia

  • Shu GUI ,
  • Jie CAO ,
  • Ruowen YANG ,
  • Rui LI
Expand
  • 1. Yunnan Key Laboratory of Meteorological Disasters and Climate Resources in the Greater Mekong Subregion,Yunnan University,Kunming 650091,Yunnan,China
    2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD),Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China
    3. Yunnan Climate Center,Kunming 650034,Yunnan,China

Received date: 2022-11-23

  Revised date: 2023-06-21

  Online published: 2024-07-25

摘要

为改善东南亚低纬高原区(LLHSA)降水模拟的性能, 提高降水预报准确性, 本文采用大气环流模式WRF(4.2版)和海洋分量模式NEMO(3.4版), 用耦合器OASIS3-MCT进行桥接, 得到区域海气耦合模式WRF-OASIS-NEMO(WON)。大气和海洋分量模式都配置成相同的Arakawa-C网格, 水平空间分辨率设为0.25°, 耦合频次设置为逐小时, 便于模拟海洋和大气环流相耦合的中尺度运动特征。为评估WON模式的模拟性能, 选取2020年8月16 -18日的强降水过程为例, 与单独WRF模式的模拟效果进行比较分析。WON和WRF模式模拟的降水大值区位于高原东北部和中西部地区, 平均日降水量约为20 mm·d-1, 与观测事实基本相符。WON模式改善了WRF模式在高原南部降水偏多而在高原西北部降水偏少的模拟偏差。WON模式改善了降水动力条件的模拟效果, 在高原中南部气旋式环流增强, 在高原西侧反气旋式环流增强, 进而改善了WRF模式在高原南部周围降水偏少, 高原西北部降水偏多的模拟偏差。WRF和WON模式均能再现垂直螺旋度的发展特征, 即在对流层中低层为正垂直螺旋度发展, 而在对流层高层为负垂直螺旋度发展。两个模式在雨带西部400 hPa高度层附近垂直螺旋度模拟偏强, 而在600~700 hPa高度层上垂直螺旋度模拟偏弱。WON模式相对于WRF模式的改进区域主要集中在雨带中西部地区。本次强降水的水汽来源包括孟湾的西南水汽输送和中国南海的偏南水汽输送。WRF模式和WON模式均能较好地重现相关水汽通量特征。WRF模式在孟湾北部水汽辐合偏强, 而在中国南海水汽向北输送偏弱。WON模式主要改善了WRF模式在中国南海水汽输送偏弱的模拟偏差。WON模式改善降水模拟效果的主要原因是孟湾海表热通量交换导致孟湾中低层大气偏冷偏干, 大气对流活动减弱, 在孟湾北部形成的低层反气旋偏差改善了本次强降水过程动力条件和水汽条件的模拟效果。

本文引用格式

桂术 , 曹杰 , 杨若文 , 李蕊 . 区域海气耦合模式WON在东南亚低纬高原一次强降水事件模拟中的应用[J]. 高原气象, 2024 , 43(4) : 982 -994 . DOI: 10.7522/j.issn.1000-0534.2023.00054

Abstract

To improve the simulation of precipitation and the accuracy of rainfall forecast over the low-latitude highland in Southeast Asia (LLHSA), a regional air-sea coupled model is developed with the Weather Research and Forecast (WRF) Model (version 4.2) and ocean general circulation model NEMO (version 3.4), using the coupler OASIS3-MCT.This new regional air-sea coupled model WRF-OASIS-NEMO is herein referred as WON.Both the atmospheric and oceanic components were configured into the same Arakawa-C grid with a horizontal spatial resolution of 0.25° and a coupling frequency of 1 hour, which are suitable for facilitating the mesoscale coupling between the atmosphere and ocean models.The evaluation of the WON model is based on the heavy precipitation event from August 16 to 18, 2020, where the simulation of WON model is compared with the standalone WRF model.The WON and WRF models simulated large precipitation over the northeastern LLHSA, the central and western LLHSA with daily precipitation around 20 mm·d-1, which is generally consistent with the observation.The WON model ameliorated the underestimation bias of precipitation over the southern LLHSA and the overestimation bias of precipitation over the northwestern LLHSA and the western LLHSA in the WRF model.The WON model improved the simulation of the dynamic conditions of precipitation, with enhanced cyclonic circulation over the central and southern LLHSA and enhanced anticyclonic circulation over the western LLHSA.Hence, the WON model ameliorated underestimation of precipitation over the southern LLHSA and overestimation of precipitation over the northwestern LLHSA.Both WRF and WON models could reproduce the development characteristics of vertical helicity, that is, positive vertical helicity in the lower-mid troposphere and negative vertical helicity in the upper troposphere.However, the simulated vertical helicity is too strong near 400 hPa layer over the western rain belt, but too weak at 600~700 hPa layer.Compared with the WRF model, the WON model shows improvements mainly in the central-western part of the rain belt.The water vapor sources of this heavy rainfall include the water vapor transport from the southwest of the Bay of Bengal and the water vapor transport from the South China Sea.Both WRF model and WON model reproduced the spatial characteristics of water vapor flux.In the WRF model, the water vapor convergence is too strong over the northern Bay of Bengal, but too weak over South China Sea.The improvement of WON model is mainly over South China Sea.The simulation improvement of the WON model is mainly because the surface heat flux exchange over the Bay of Bengal caused the mid-lower levels of troposphere to become cooler and drier.The atmospheric convection was weakened, associated with a low-level anticyclonic bias over the northern Bay of Bengal.This anticyclonic bias improved the simulation of atmospheric dynamics and water vapor conditions for this heavy precipitation event.

参考文献

null
Chen F Dudhia J2001.Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system.Part I: Model implementation and sensitivity[J].Monthly Weather Review, 129: 569-585.DOI: 10.1175/1520-0493(2001)129<0569: CAALSH>2.0.CO; 2 .
null
Chen T C Yoon J H2000.Interannual variation in Indochina Summer Monsoon rainfall: possible mechanism[J].Journal of Climate, 13: 1979-1986.DOI: 10.1175/1520-0442(2000)013<1979: IVIISM>2.0.CO; 2 .
null
Craig A Valcke S Coquart L2017.Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0[J].Geoscientific Model Development10(9): 3297-3308.DOI: 10.5194/gmd-10-3297-2017 .
null
Davis C Ahijevych D Wang W, et al, 2016.Evaluating medium-range tropical cyclone forecasts in uniform-and variable-resolution global models[J].Monthly Weather Review, 144: 4141-4160.DOI: 10.1175/ MWR-D-16-0021.1 .
null
Davis C Wang W Chen S, et al, 2008.Prediction of landfalling hurricanes with the advanced hurricane WRF Model[J].Monthly Weather Review, 136: 1990-2005.DOI: 10.1175/2007MWR2085.1 .
null
Fudeyasu H Iizuka S Matsuura T2006.Seasonality of westward-propagating disturbances over Southeast and south Asia originated from typhoons[J].Geophysical Research Letters33(10): L10809.DOI: 10.1029/2005gl025380 .
null
Funk C Peterson P Landsfeld M, et al, 2015.The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes[J].Scientific Data, 2: 150066.DOI: 10.1038/sdata.2015.66 .
null
Greasby T A Sain S R2011.Multivariate spatial analysis of climate change projections[J].Journal of Agricultural Biological and Environmental Statistics, 16: 571-585.DOI: 10.1007/s13253-011-0072-8 .
null
Hersbach H Bell B Berrisford P, et al, 2020.The ERA5 global reanalysis[J].Quarterly Journal of the Royal Meteorological Society, 146: 1999-2049.DOI: 10.1002/qj.3803 .
null
Hong S Y Lim J O J2006.The WRF single-moment 6-class microphysics scheme (WSM6)[J].Journal of Korean Meteorological Society, 42: 129-151.
null
Hong S Y Noh Y Dudhia J2006.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Monthly Weather Review134(9): 2318-2341.DOI: 10.1175/Mwr3199.1 .
null
Ji F Evans J P Di Virgilio G, et al, 2020.Projected changes in vertical temperature profiles for Australasia[J].Climate Dynamics, 55: 2453-2468.DOI: 10.1007/s00382-020-05392-2 .
null
Kotlarski S Luthi D Schar C2015.The elevation dependency of 21st century European climate change: an RCM ensemble perspective[J].International Journal of Climatology, 35: 3902-3920.DOI: 10.1002/joc.4254 .
null
Li R Wang S Y Gillies R R, et al, 2015.Decadal oscillation of autumn precipitation in Central Vietnam modulated by the East Pacific-North Pacific (EP-NP) teleconnection[J].Environmental Research Letters10(2): 1748-9326.DOI: 10.1088/1748-9326/10/2/024008 .
null
Liang S Sun Z2004.Characteristics of summer precipitation in North Vietnam and its relation to Pacific SSTs[J].Journal of Nanjing Institute of Meteorology27(6): 844-848.
null
Liu J2017.Evaluation of a NEMO model of the Strait of Georgia and insights into mixing and transport of the Fraser River plume[D].University of British Columbia.
null
Madec G, the NEMO team, 2008.NEMO ocean engine[R].Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619.https: //www.semanticscholar.org/paper/NEMO-ocean-engine-Madec/33cd9cbc6e275577f647157458817180c23ca431.
null
Mlawer E Taubman S Brown P, et al, 1997.Radiative transfer for inhomogeneous atmospheres: RRTM, A validated correlated-k model for the longwave[J].Journal of Geophysical Research, 102: 16663-16682.DOI: 10.1029/97JD00237 .
null
Momin I M Mitra A K Bhatla R2021.Assessment of NEMO simulated surface current with HF radar along Andhra Pradesh coast[J].Journal of Advances in Modelling Earth Systems, 130: 69.DOI: 10.1007/s12040-021-01553-x .
null
Quang V D Hong X D Nhu C, et al, 2020.Changes in precipitation extremes across Vietnam and its relationships with Teleconnection Patterns of the Northern Hemisphere[J].Water12(6): 1646.DOI: 10.3390/w12061646 .
null
Samson G Masson S Lengaigne M, et al, 2014.The NOW regional coupled model: Application to the tropical Indian Ocean climate and tropical cyclone activity[J].Journal of Advances in Modelling Earth Systems, 6: 700-722.DOI: 10.1002/2014MS000324 .
null
Skamarock W C Klemp J B Dudhia J, et al, 2019.A description of the advanced research WRF Model Version 4[R].NCAR Technical Note, NCAR/TN-5565+STR, 162 pp.DOI: 10.5065/1dfh-6p97.
null
Takahashi H G Fujinami H Yasunari T, et al, 2015.Role of tropical cyclones along the monsoon trough in the 2011 Thai flood and interannual variability[J].Journal of Climate28(4): 1465-1476.DOI: 10.1175/jcli-d-14-00147.1 .
null
Takahashi H G Yasunari T2008.Decreasing trend in rainfall over indochina during the late summer monsoon: impact of tropical cyclones[J].Journal of the Meteorological Society of Japan, Series II, 86(3): 429-438.DOI: 10.2151/jmsj.86.429 .
null
Torn R D Davis C A2012.The influence of shallow convection on tropical cyclone track forecasts[J].Monthly Weather Review, 140: 2188-2197.DOI: 10.1175/MWR-D-11-00246.1 .
null
Valcke S2013.The OASIS3 coupler: a European climate modelling community software[J].Geoscientific Model Development6(2): 373-388.DOI: 10.5194/gmd-6-373-2013 .
null
Vancoppenolle M Fichefet T Goosse H2009a.Simulating the mass balance and salinity of Arctic and Antarctic Sea ice.2.Importance of salinity variations[J].Ocean Modelling, 27: 54-69.DOI: 10.1016/j.ocemod.2008.11.003 .
null
Vancoppenolle M Fichefet T Goosse H2009b.Simulating the mass balance and salinity of Arctic and Antarctic Sea ice.1.Model description and validation[J].Ocean Modelling, 27: 33-53.DOI: 10.1016/j.ocemod.2008.10.005 .
null
Yang RW Zhang W K Gui S, et al, 2018.Rainy season precipitation variation in the Mekong River basin and its relationship to the Indian and East Asian summer monsoons[J].Climate Dynamics50(9): 5691-5708.DOI: 10.1007/s00382-018-4471-1 .
null
Zhang C Wang Y2017.Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km- mesh regional climate model[J].Journal of Climate, 30: 5923-5941.DOI: 10.1175/JCLI-D-16-0597.1 .
null
陈子凡, 王磊, 李谢辉, 等, 2022.西南地区极端降水时空变化特征及其与强ENSO事件的关系[J].高原气象41(3): 604-616.DOI: 10.7522/j.issn.1000-0534.2022.00004.Chen Z D
null
Wang L Li X H, et al, 2022.Spatiotemporal change characteristics of extreme precipitation in south-western China and its relationship with intense ENSO events[J].Plateau Meteorology41(3): 604-616.DOI: 10.7522/j.issn.1000-0534.2022.00004 .
null
董广涛, 陈伯民, 陈葆德, 2012.区域气候模式RegCM3在华东地区夏季的10年回报和2010年业务预报[J].高原气象31(6): 1601-1610.
null
Dong G T Chen B M Chen B D2012.Application of Regional Climate Model (RegCM3) on 10-year hindcast experiment and a real-time operation in summer of 2010 in the Eastern China[J].Plateau Meteorology31(6): 1601-1610.
null
雷显辉, 宋敏红, 张少波, 2022.夏季南亚高压和西太副高活动特征指数与中国东部降水分布的联系[J].高原气象41(2): 489-501.DOI: 10.7522/j.issn.1000-0534.2021.00099.Lei X H
null
Song M H Zhang S B2022.Association between summer activity characteristic indices of the South Asia High and the West Pacific Subtropical High and precipitation distribution in Eastern China[J].Plateau Meteorology41(2): 489-501.DOI: 10. 7522/j.issn.1000-0534.2021.00099 .
null
李翠华, 蔡榕硕, 陈际龙, 2010.东中国海夏季潜热通量的时空特征及其与中国东部降水的联系[J].高原气象29(6): 1485-1492.
null
Li C H Cai R S Chen J L2010.Temporal and spatial characteristics of latent heat flux in the East China Sea and its association with summer rainfall in East China[J].Plateau Meteorology29(6): 1485-1492.
null
李耀东, 刘健文, 高守亭, 2004.动力和能量参数在强对流天气预报中的应用研究[J].气象学报62(4): 401-409.DOI: 10.11676/qxxb2004.041.Li Y D
null
Liu J W Gao S T2004.On the progress of application for dynamic and energetic convective parameters associated with severe convective weather forecasting[J].Acta Meteorologica Sinica62(4): 401-409.DOI: 10. 11676/qxxb2004.041 .
null
栾澜, 孟宪红, 吕世华, 等, 2017.青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J].高原气象36(2): 283-293.DOI: 10.7522/j.issn.1000-0534.2016.00086.Luan L
null
Meng X H S H, et al, 2017.Impacts of microphysics and PBL physics parameterization on a convective precipitation over the Qinghai-Tibetan Plateau[J].Plateau Meteorology36(2): 283-293.DOI: 10.7522/j.issn.1000-0534.2016.00086 .
null
齐庆华, 蔡榕硕, 张启龙, 2013.华南夏季极端降水时空变异及其与西北部太平洋海气异常关联性初探[J].高原气象32(1): 110-121.DOI: 10.7522/j.issn.1000-0534.2012.00012.Qi Q H
null
Cai R S Zhang Q L2013.Primarily analyses on variations of summer extreme precipitation in South China and its relation to the sea-air anomaly in northwestern Pacific Ocean[J].Plateau Meteorology32(1): 110-121.DOI: 10.7522/j.issn.1000-0534.2012.00012 .
null
孙辉, 刘晓东, 刘长海, 等, 2013.青藏高原夏季降水日变化的高分辨率数值模拟[J].热带气象学报29(6): 130-140.
null
Sun H Liu X D Liu C H, et al, 2013.High-resolution numerical simulation of the diurnal cycle in summertime precipitation over the Tibetan plateau[J].Journal of Tropical Meteorology Journal of Tropical Meteorology29(6): 130-140.
null
田高山, 陈耀登, 高庆九, 等, 2022.混合截断尺度Blending方案及其在西南区域模式中的应用[J].高原气象41(6): 1630-1641.DOI: 10.7522/j.issn.1000-0534.2022.00005.Tian G S
null
Chen Y D Gao Q J, et al, 2022.Blending scheme with mixed truncation scale and its application in southwest regional model[J].Plateau Meteorology41(6): 1630-1641.DOI: 10.7522/j.issn.1000-0534.2022.00005 .
null
王志福, 钱永甫, 林惠娟, 2008.区域海气耦合模式对我国极端降水模拟分析[J].高原气象27(1): 113-121.
null
Wang Z F Qian Y F Lin H J2008.Analysis of numerical simulation on extreme precipitation in China using a coupled regional ocean-atmosphere model[J].Plateau Meteorology27(1): 113-121.
null
夏阳, 严小冬, 刘芷含, 等, 2023.中国西南贵州地区冬季凝冻日数的气候特征及其异常成因[J].高原气象42(1): 173-185.DOI: 10.7522/j.issn.1000-0534.2022.00028.Xia Y
null
Yan X D Liu Z H, et al, 2023.Climatic characteristics of winter freezing days in Guizhou in south west China and their anomalous causes[J].Plateau Meteorology42(1): 173-185.DOI: 10. 7522/j.issn.1000-0534.2022.00028 .
null
严小冬, 宋燕, 黄晨然, 等, 2017.贵州省冬季气温的时空特征及其与海气的关系[J].高原气象36(5): 1336-1345.DOI: 10. 7522/j.issn.1000-0534.2016.00122.Yan X D
null
Song Y Huang C R, et al, 2017.Temporal and spatial characteristics of winter temperature in Guizhou and its relationships with ocean and atmosphere[J].Plateau Meteorology36(5): 1336-1345.DOI: 10. 7522/j.issn.1000-0534.2016.00122 .
null
阴蜀城, 李茂善, 刘啸然, 等, 2020.2014年8月7日那曲地区对流云降水及其云微物理过程的数值模拟[J].高原气象39(1): 51-60.DOI: 10.7522/j.issn.1000-0534.2019.00062.Yin S C
null
Li M S Liu X R, et al, 2020.Numerical simulation of cloud precipitation and cloud microphysical process in Nagqu Area on August 7, 2014[J].Plateau Meteorology39(1): 51-60.DOI: 10. 7522/j.issn.1000-0534.2019.00062 .
null
尤红, 姜丽萍, 彭端, 等, 2007.2005年6月广东特大暴雨垂直螺旋度分析[J].气象33(4): 71-76.YouH, JiangL P, PengR, et al, 2007.Analysis of vertical helicity for "05?6" heavy rainstorm process over Guangdong[J].Meteorological Monthly, 33(4): 71-76.
null
岳彩军, 郭煜, 寿绍文, 等, 2011.螺旋度在我国多种灾害性天气研究中的应用进展[J].暴雨灾害30(2): 107-116.
null
Yue C J Guo Y Shou S W, et al, 2011.Progress in application study of helicity to severe weathers[J].Torrential Rain and Disasters30(2): 107-116.
null
张天宇, 王雨潇, 孙营营, 等, 2023.1998-2020年三峡库区小时极端降水时空变化特征分析[J].高原气象42(1): 108-115.DOI: 10.7522/j.issn.1000-0534.2022.00019.Zhang T Y
null
Wang Y X Sun Y Y, et al, 2023.Temporal and spatial variation characteristics of hourly extreme precipitation in the Three Gorges Region in 1998-2020[J].Plateau Meteorology42(1): 108-115.DOI: 10.7522/j.issn.1000-0534.2022.00019 .
null
邹立维, 周天军, 2012.一个区域海气耦合模式的发展及其在西北太平洋季风区的性能检验: 不同大气分量的影响[J].中国科学: 地球科学42(4): 614-628.
null
Zou L W Zhou T J2012.Development and evaluation of a regional ocean-atmosphere coupled model with focus on the western North Pacific summer monsoon simulation: impacts of different atmospheric components[J].Science China Earth Sciences42(4): 614-628.
文章导航

/