区域海气耦合模式WON在东南亚低纬高原一次强降水事件模拟中的应用
收稿日期: 2022-11-23
修回日期: 2023-06-21
网络出版日期: 2024-07-25
基金资助
国家自然科学基金项目(42030603)
Application of the Regional Air-sea Coupled Model WON to the Simulation of a Heavy Precipitation Event over the Low Latitude Highland in Southeast Asia
Received date: 2022-11-23
Revised date: 2023-06-21
Online published: 2024-07-25
为改善东南亚低纬高原区(LLHSA)降水模拟的性能, 提高降水预报准确性, 本文采用大气环流模式WRF(4.2版)和海洋分量模式NEMO(3.4版), 用耦合器OASIS3-MCT进行桥接, 得到区域海气耦合模式WRF-OASIS-NEMO(WON)。大气和海洋分量模式都配置成相同的Arakawa-C网格, 水平空间分辨率设为0.25°, 耦合频次设置为逐小时, 便于模拟海洋和大气环流相耦合的中尺度运动特征。为评估WON模式的模拟性能, 选取2020年8月16 -18日的强降水过程为例, 与单独WRF模式的模拟效果进行比较分析。WON和WRF模式模拟的降水大值区位于高原东北部和中西部地区, 平均日降水量约为20 mm·d-1, 与观测事实基本相符。WON模式改善了WRF模式在高原南部降水偏多而在高原西北部降水偏少的模拟偏差。WON模式改善了降水动力条件的模拟效果, 在高原中南部气旋式环流增强, 在高原西侧反气旋式环流增强, 进而改善了WRF模式在高原南部周围降水偏少, 高原西北部降水偏多的模拟偏差。WRF和WON模式均能再现垂直螺旋度的发展特征, 即在对流层中低层为正垂直螺旋度发展, 而在对流层高层为负垂直螺旋度发展。两个模式在雨带西部400 hPa高度层附近垂直螺旋度模拟偏强, 而在600~700 hPa高度层上垂直螺旋度模拟偏弱。WON模式相对于WRF模式的改进区域主要集中在雨带中西部地区。本次强降水的水汽来源包括孟湾的西南水汽输送和中国南海的偏南水汽输送。WRF模式和WON模式均能较好地重现相关水汽通量特征。WRF模式在孟湾北部水汽辐合偏强, 而在中国南海水汽向北输送偏弱。WON模式主要改善了WRF模式在中国南海水汽输送偏弱的模拟偏差。WON模式改善降水模拟效果的主要原因是孟湾海表热通量交换导致孟湾中低层大气偏冷偏干, 大气对流活动减弱, 在孟湾北部形成的低层反气旋偏差改善了本次强降水过程动力条件和水汽条件的模拟效果。
桂术 , 曹杰 , 杨若文 , 李蕊 . 区域海气耦合模式WON在东南亚低纬高原一次强降水事件模拟中的应用[J]. 高原气象, 2024 , 43(4) : 982 -994 . DOI: 10.7522/j.issn.1000-0534.2023.00054
To improve the simulation of precipitation and the accuracy of rainfall forecast over the low-latitude highland in Southeast Asia (LLHSA), a regional air-sea coupled model is developed with the Weather Research and Forecast (WRF) Model (version 4.2) and ocean general circulation model NEMO (version 3.4), using the coupler OASIS3-MCT.This new regional air-sea coupled model WRF-OASIS-NEMO is herein referred as WON.Both the atmospheric and oceanic components were configured into the same Arakawa-C grid with a horizontal spatial resolution of 0.25° and a coupling frequency of 1 hour, which are suitable for facilitating the mesoscale coupling between the atmosphere and ocean models.The evaluation of the WON model is based on the heavy precipitation event from August 16 to 18, 2020, where the simulation of WON model is compared with the standalone WRF model.The WON and WRF models simulated large precipitation over the northeastern LLHSA, the central and western LLHSA with daily precipitation around 20 mm·d-1, which is generally consistent with the observation.The WON model ameliorated the underestimation bias of precipitation over the southern LLHSA and the overestimation bias of precipitation over the northwestern LLHSA and the western LLHSA in the WRF model.The WON model improved the simulation of the dynamic conditions of precipitation, with enhanced cyclonic circulation over the central and southern LLHSA and enhanced anticyclonic circulation over the western LLHSA.Hence, the WON model ameliorated underestimation of precipitation over the southern LLHSA and overestimation of precipitation over the northwestern LLHSA.Both WRF and WON models could reproduce the development characteristics of vertical helicity, that is, positive vertical helicity in the lower-mid troposphere and negative vertical helicity in the upper troposphere.However, the simulated vertical helicity is too strong near 400 hPa layer over the western rain belt, but too weak at 600~700 hPa layer.Compared with the WRF model, the WON model shows improvements mainly in the central-western part of the rain belt.The water vapor sources of this heavy rainfall include the water vapor transport from the southwest of the Bay of Bengal and the water vapor transport from the South China Sea.Both WRF model and WON model reproduced the spatial characteristics of water vapor flux.In the WRF model, the water vapor convergence is too strong over the northern Bay of Bengal, but too weak over South China Sea.The improvement of WON model is mainly over South China Sea.The simulation improvement of the WON model is mainly because the surface heat flux exchange over the Bay of Bengal caused the mid-lower levels of troposphere to become cooler and drier.The atmospheric convection was weakened, associated with a low-level anticyclonic bias over the northern Bay of Bengal.This anticyclonic bias improved the simulation of atmospheric dynamics and water vapor conditions for this heavy precipitation event.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | Madec G, the NEMO team, 2008.NEMO ocean engine[R].Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619.https: //www.semanticscholar.org/paper/NEMO-ocean-engine-Madec/33cd9cbc6e275577f647157458817180c23ca431. |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈子凡, 王磊, 李谢辉, 等, 2022.西南地区极端降水时空变化特征及其与强ENSO事件的关系[J].高原气象, 41(3): 604-616.DOI: 10.7522/j.issn.1000-0534.2022.00004.Chen Z D , |
null | |
null | 董广涛, 陈伯民, 陈葆德, 2012.区域气候模式RegCM3在华东地区夏季的10年回报和2010年业务预报[J].高原气象, 31(6): 1601-1610. |
null | |
null | 雷显辉, 宋敏红, 张少波, 2022.夏季南亚高压和西太副高活动特征指数与中国东部降水分布的联系[J].高原气象, 41(2): 489-501.DOI: 10.7522/j.issn.1000-0534.2021.00099.Lei X H , |
null | |
null | 李翠华, 蔡榕硕, 陈际龙, 2010.东中国海夏季潜热通量的时空特征及其与中国东部降水的联系[J].高原气象, 29(6): 1485-1492. |
null | |
null | 李耀东, 刘健文, 高守亭, 2004.动力和能量参数在强对流天气预报中的应用研究[J].气象学报, 62(4): 401-409.DOI: 10.11676/qxxb2004.041.Li Y D , |
null | |
null | 栾澜, 孟宪红, 吕世华, 等, 2017.青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J].高原气象, 36(2): 283-293.DOI: 10.7522/j.issn.1000-0534.2016.00086.Luan L , |
null | |
null | 齐庆华, 蔡榕硕, 张启龙, 2013.华南夏季极端降水时空变异及其与西北部太平洋海气异常关联性初探[J].高原气象, 32(1): 110-121.DOI: 10.7522/j.issn.1000-0534.2012.00012.Qi Q H , |
null | |
null | 孙辉, 刘晓东, 刘长海, 等, 2013.青藏高原夏季降水日变化的高分辨率数值模拟[J].热带气象学报, 29(6): 130-140. |
null | |
null | 田高山, 陈耀登, 高庆九, 等, 2022.混合截断尺度Blending方案及其在西南区域模式中的应用[J].高原气象, 41(6): 1630-1641.DOI: 10.7522/j.issn.1000-0534.2022.00005.Tian G S , |
null | |
null | 王志福, 钱永甫, 林惠娟, 2008.区域海气耦合模式对我国极端降水模拟分析[J].高原气象, 27(1): 113-121. |
null | |
null | 夏阳, 严小冬, 刘芷含, 等, 2023.中国西南贵州地区冬季凝冻日数的气候特征及其异常成因[J].高原气象, 42(1): 173-185.DOI: 10.7522/j.issn.1000-0534.2022.00028.Xia Y , |
null | |
null | 严小冬, 宋燕, 黄晨然, 等, 2017.贵州省冬季气温的时空特征及其与海气的关系[J].高原气象, 36(5): 1336-1345.DOI: 10. 7522/j.issn.1000-0534.2016.00122.Yan X D , |
null | |
null | 阴蜀城, 李茂善, 刘啸然, 等, 2020.2014年8月7日那曲地区对流云降水及其云微物理过程的数值模拟[J].高原气象, 39(1): 51-60.DOI: 10.7522/j.issn.1000-0534.2019.00062.Yin S C , |
null | |
null | 尤红, 姜丽萍, 彭端, 等, 2007.2005年6月广东特大暴雨垂直螺旋度分析[J].气象, 33(4): 71-76.YouH, JiangL P, PengR, et al, 2007.Analysis of vertical helicity for "05?6" heavy rainstorm process over Guangdong[J].Meteorological Monthly, 33(4): 71-76. |
null | 岳彩军, 郭煜, 寿绍文, 等, 2011.螺旋度在我国多种灾害性天气研究中的应用进展[J].暴雨灾害, 30(2): 107-116. |
null | |
null | 张天宇, 王雨潇, 孙营营, 等, 2023.1998-2020年三峡库区小时极端降水时空变化特征分析[J].高原气象, 42(1): 108-115.DOI: 10.7522/j.issn.1000-0534.2022.00019.Zhang T Y , |
null | |
null | 邹立维, 周天军, 2012.一个区域海气耦合模式的发展及其在西北太平洋季风区的性能检验: 不同大气分量的影响[J].中国科学: 地球科学, 42(4): 614-628. |
null |
/
〈 |
|
〉 |