基于LightGBM机器学习算法的江西气温短期预报模型研究

  • 孙康慧 ,
  • 肖安 ,
  • 夏侯杰
展开
  • 江西省气象台 江西省气象局天气预报开放实验室,江西 南昌 330096

孙康慧(1994-), 女, 河南周口人, 工程师, 主要从事短临天气预报技术研究. E-mail:

收稿日期: 2023-11-07

  修回日期: 2024-03-11

  网络出版日期: 2024-03-11

基金资助

华东区域气象科技协同创新基金项目(QYHZ202315); 江西省气象局重点项目(JX2023Z05)

Study on Short Term Temperature Forecast Model in Jiangxi Province based on LightGBM Machine Learning Algorithm

  • Kanghui SUN ,
  • An XIAO ,
  • Houjie XIA
Expand
  • Jiangxi Meteorological Observatory,Weather Forecast Open Laboratory of Jiangxi Meteorological Bureau,Nanchang 330096,Jiangxi,China

Received date: 2023-11-07

  Revised date: 2024-03-11

  Online published: 2024-03-11

摘要

为进一步提高站点气温的预报精度, 增强对极端气温的预报能力, 本研究利用2017 -2019年江西省91个国家站地面观测数据和ECMWF模式高空和地面预报数据, 基于LightGBM机器学习算法和MOS预报框架, 建立了江西省24 h国家站日最高(低)气温预报模型。2020年评估结果表明: LightGBM模型日最高(低)气温预报和观测变化趋势一致, 年平均预报效果优于ECMWF、 CMA-SH9、 CMA-GFS三家数值模式、 RF和SVM两种机器学习产品以及主观订正产品。从预报误差的时空分布来看, 模型冬、 春季日最高(低)气温预报误差略大于夏、 秋季; 日最高气温预报误差呈现“南大北小、 周边大于中心”的空间分布特征, 日最低气温则与之大致相反。从重要天气过程来看, 在高温过程中, LightGBM模型在七种产品中预报效果最优; 在强冷空气过程中, LightGBM模型预报效果仍优于三家数值模式产品和另外两种机器学习模型, 但日最低气温预报效果不如主观订正产品。针对强冷空气过程中低温预报误差进行简单经验订正后, 模型低温预报效果与主观订正产品接近。模型重要性分析显示临近地面观测特征对模型建立也有较大贡献, 该结果可以为模式改进和气温预报产品研发提供参考。目前, LightGBM模型气温预报产品已应用于江西省气象业务。

本文引用格式

孙康慧 , 肖安 , 夏侯杰 . 基于LightGBM机器学习算法的江西气温短期预报模型研究[J]. 高原气象, 2024 , 43(6) : 1520 -1535 . DOI: 10.7522/j.issn.1000-0534.2024.00035

Abstract

In order to achieve further improvement in the forecast accuracy of station temperatures and enhance the forecast capability for extreme temperatures, this study establishes a 24-hour national station daily maximum (minimum) temperature forecast model for Jiangxi Province based on the LightGBM machine-learning algorithm and the MOS forecast framework by using the surface observation data of 91 national stations in Jiangxi Province and the upper-air and surface forecast data of the ECMWF model from 2017 to 2019.The results of the 2020 evaluation show that the LightGBM model daily maximum (minimum) temperature forecast is consistent with the observed trend, and the annual average forecast is better than that of three numerical models, ECMWF, CMA-SH9 and CMA-GFS, two machine learning products, RF and SVM, and subjective revision products.In terms of the spatial and temporal distribution of forecast errors, the model's daily maximum (minimum) temperature forecast errors in winter and spring are slightly larger than those in summer and autumn; the daily maximum temperature forecast errors show the spatial distribution characteristics of "larger in the south and smaller in the north, and larger in the periphery than in the centre", while the opposite is true for the daily minimum temperatures.In terms of important weather processes, the LightGBM model has the best prediction effect among the seven products in the high temperature process; in the strong cold air process, the LightGBM model is still better than the three numerical model products and the other two machine-learning models, but the prediction effect of the daily minimum temperature is not as good as that of the subjective revision products.After a simple empirical correction for the low-temperature forecast error in the strong cold air process, the model low-temperature forecast effect is close to that of the subjective revision product.The model significance analysis shows that the recent surface observation features also contribute to the model construction, and the results can be used as a reference for model improvement and temperature forecast product development.At present, the LightGBM model temperature forecast products have been applied to meteorological operations in Jiangxi Province.

参考文献

null
Bauer P Thorpe A Brunet G2015.The quiet revolution of numerical weather prediction[J].Nature525 (7567): 47.DOI: 10. 1038/nature14956 .
null
Breiman L1996.Bagging predictors[J].Machine Learning24(2): 123-140.DOI: 10.1023/A: 1018 054314350 .
null
Breiman L2001.Random forests[J].Machine Learning45(1): 5-32.DOI: 10.1023/A: 1010933404 324 .
null
Chen H Q Zhao L Dong W, et al, 2022.Spatiotemporal variation of mortality burden attributable to heatwaves in China, 1979-2020[J].Science Bulletin67(13): 1340-1344.DOI: 10.1016/j.scib.2022.05.006 .
null
Fan J L Yue W J Wu L F, et al, 2018.Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China[J].Agricultural and Forest Meteorology, 263: 225-241.DOI: 10.1 016/j.agrformet.2018.08.019 .
null
Friedman J H2001.Greedy function approximation: a gradient boosting machine[J].The Annals of Statistics5(29): 1189-1232.
null
Glahn H R Lowry D A1972.The use of model output statistics (MOS) in objective weather forecasting[J].Journal of Applied Meteorology11(8): 1203-1211.
null
Han L Chen M X Chen K K, et al, 2021.A deep learning method for bias correction of ECMWF 24-240 h forecasts[J].Advances In Atmospheric Sciences38(9): 1444-1459.DOI: 10.1007/s 00376-021-0215-y .
null
Hossain M Rekabdar B Louis S J, et al, 2015.Forecasting the weather of Nevada: a deep learning approach[C].International Joint Conference on Neural Networks, IEEE, 1-6, DOI: 10. 1109/IJCNN.2015.7280812 .
null
Ke G L Meng Q Finley T, et al, 2017.LightGBM: a highly efficient gradient boosting decision tree[J].Advances in Neural Information Processing Systems.30: 3149-3157.
null
Klein W H Lewis B M Enger I1959.Objective prediction of five-day mean temperatures during winter[J].Journal of Meteorology16(6): 672-682.
null
Liu X W Duan H X Huang W B, et al, 2021.Classified early warning and forecast of severe convective weather based on LightGBM algorithm[J].Atmospheric and Climate Sciences11(2): 284-301.DOI: 10.4236/acs.2021.112017 .
null
Lynch P2008.The origins of computer weather prediction and climate modeling[J].Journal of Computational Physics227(7): 3431-3444.DOI: 10.1016/j.jcp.2007.02.034 .
null
Parzen E1962.On estimation of probability density function and mode[J].The Annals of Mathematical Statistics33(3): 1065-1076.DOI: 10.1214/aoms/1177704472 .
null
Salcedo-Sanz S Deo R C Carro-Calvo L, et al, 2016.Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms[J].Theoretical and Applied Climatology125(1-2): 13-25.DOI: 10.1007/s00704-015-1480-4 .
null
Schapire R E1990.The strength of weak learnability[J].Machine Learning5(2): 197-227.DOI: 10.1007/ BF0011 6037 .
null
Ustaoglu B Cigizoglu H K Karaca M2010.Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods[J].Meteorological Applications15(4): 431-445.DOI: 10.1002/met.83 .
null
Zhong J T Zhang X Y Gui K, et al, 2021.Robust prediction of hourly PM2.5 from meteorological data using LightGBM[J], National Science Review8(10): 1-12.DOI: 10.1093/nsr/nwaa307 .
null
Zhou J Li E M Yang S, et al, 2019.Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories[J].Safety Science, 118: 505-518.DOI: 10.1016/j.ssci.2019.05.046 .
null
Aurélien G2020.机器学习实战: 基于Scikit-Learn、 Keras和TensorFlow(第二版)[M].宋能辉, 李娴, 译.北京: 机械工业出版社, 66-67.Aurélien G, 2020.Hands-on machine learning with scikit-learn, keras & tensorflow[M].Translated by Song N H and Li X.BeiJing: China Machine Press, 66-67.
null
白永清, 林春泽, 陈正洪, 等, 2013.基于LAPS分析的WRF模式逐时气温精细化预报释用[J].气象39(4): 460-465.DOI: 10.7519/j.issn.1000-0526.2013.4.008.Bai Y Q
null
Lin C Z Chen Z H, et al, 2013.Product interpretation of refined hourly temperature based on the assimilation of WRF model in LAPS[J].Meteorology Monthly39(4): 460-465.DOI: 10.7519/j.issn.1000-0526.2013.4.008 .
null
陈昱文, 黄小猛, 李熠, 等 .2020.基于ECMWF产品的站点气温预报集成学习误差订正[J].应用气象学报31(4): 494-503.DOI: 10.11898/1001-7313.20200411.Chen Y W
null
Huang X M Li Y, et al, 2020.Ensemble learning for bias correction of station temperature forecast based on ECMWF products[J].Journal of Applied Meteorological Science31(4): 494-503.DOI: 10.11898/1001-7313.20200411 .
null
程胡华, 王益柏, 赵亮, 等, 2020.相似偏差订正法在短期温度预报中的应用研究[J].气象研究与应用41(3): 21-26.DOI: 10.19849/j.cnki.CN45-1356/P.2020.3.04.Cheng H H
null
Wang Y B Zhao L, et al, 2020.Application of similar deviation correction method in short-term temperature forecast[J].Journal of Meteorological Research and Application41(3): 21-26.DOI: 10.19849/j.cnki.CN45-1356/P.2020.3.04 .
null
代刊, 曹勇, 钱奇峰, 等, 2016.中短期数字化天气预报技术现状及趋势[J].气象42(12): 1445-1455.DOI: 10.7519/j.issn.1000-0526.2016.12.002.Dai K
null
Cao Y Qian Q F, et al, 2016.Situation and tendency of operational technologies in short and medium range weather forecast[J].Meteorological Monthly42(12): 1445-1455.DOI: 10.7519/j.issn.1000-0526.2016.12.002 .
null
贺倩, 汪明, 刘凯, 2022.基于机器学习的气温要素空间插值[J].高原气象41(3): 733-748.DOI: 10.7522/j.issn.1000-0534.2021.000007.He Q
null
Wang M Liu K2022.Spatial interpolation of air temperature based on machine learning[J].Plateau Meteorology41(3): 733-748.DOI: 10.7522/j.issn.1000-0534.2021.000007 .
null
姜红, 何清, 曾晓青, 等, 2021.基于随机森林和卷积神经网络的FY-4A号卫星沙尘监测研究[J].高原气象40(3): 680-689.DOI: 10.7522/j.issn.1000-0534.2020.00060.Jiang H
null
He Q Zeng X Q, et al, 2021.Sand and dust monitoring using FY-4A satellite data based on the random forests and convolutional neural networks[J].Plateau Meteorology40(3): 680-689.DOI: 10.7522/j.issn.1000-0534.2020.00060 .
null
林纾, 李红英, 黄鹏程, 等, 2022.2022年夏季我国高温干旱特征及其环流形势分析[J].干旱气象40(5): 748-763.DOI: 10.11755/j.issn.1006-7639(2022)-05-0748.Lin S
null
Li H Y Huang P C, et al, 2022.Characteristics of high temperature, drought and circulation situation in summer 2022 in China[J].Journal of Arid Meteorology40(5): 748-763.DOI: 10.11755/ j.issn.1006-7639(2022)-05-0748 .
null
罗聪, 曾沁, 高亭亭, 等, 2012.精细化逐时滚动温度预报方法及检验[J].热带气象学报28(4): 552-556.DOI: 10.3969/j.issn.1004-4965.2012.04.014.Luo C
null
Zeng Q Gao T T, et al, 2012.Research of seamless hourly updated forecast of temperature and verification[J].Journal of Tropical Meteorology28(4): 552-556.DOI: 10.3969/j.issn.1004-4965.2012.04.014 .
null
马学款, 普布次仁, 唐叔乙, 等, 2007.人工神经网络在西藏中短期温度预报中的应用[J].高原气象26(3): 491-495.DOI: 10.3321/j.issn: 1000-0534.2007.03.008.Ma X K
null
Pubu C R Tang S Y, et al, 2007.The application of artificial neural network to short and mid-range temperature forecast in Tibet[J].Plateau Meteorology26(3): 491-495.DOI: 10.3321/j.issn: 1000-0534.2007.03.008 .
null
门晓磊, 焦瑞莉, 王鼎, 等, 2019.基于机器学习的华北气温多模式集合预报的订正方法[J].气候与环境研究24 (1): 116-124.DOI: 10.3878/j.issn.1006-9585.2018.18049.Men X L
null
Jiao R L Wang D, et al, 2019.A temperature correction method for multi-model ensemble forecast in North China based on machine learning[J].Climatic and Environmental Research (in Chinese)24(1): 116-124.DOI: 10.3878/j.issn.1006-9585.2018.18049 .
null
谭江红, 陈伟亮, 王珊珊, 2018.一种机器学习方法在湖北定时气温预报中的应用试验[J].气象科技进展8(5): 46-50.DOI: 10.3969/j.issn.2095-1973.2018.05.006.Tan J H
null
Chen W L Wang S S2018.Using a machine learning method for temperature forecast in Hubei province[J].Advances in Meteorological Science and Technology8(5): 46-50.DOI: 10.3969/j.issn.2095-1973.2018.05.006 .
null
王丹, 黄少妮, 高红燕, 等, 2016.递减平均法对陕西SCMOC精细化温度预报的订正效果[J].干旱气象34(3): 575-583.DOI: 10.11755/j.issn.1006-7639(2016)-03-0575.Wang D
null
Huang S N Gao H Y, et al, 2016.Analysis on errors of SCMOC refined guidance temperature prediction corrected by the decaying averaging method in Shaanxi province[J].Journal of Arid Meteorology34(3): 575-583.DOI: 10.11755/j.issn.1006-7639(2016)-03-0575 .
null
王菲, 张华, 刘梦婷, 等, 2022.气候反馈对温度空间模态的依赖性: IPCC AR6解读[J].大气科学学报45(6): 826-834.DOI: 10.13878/j.cnki.dqkxxb.20220928001.Wang F
null
Zhang H Liu M T, et al, 2022.Dependence of climate feedbacks on temperature patterns: interpreting IPCC AR6[J].Transactions of Atmospheric Sciences45(6): 826-834.DOI: 10.13878/j.cnki.dqkxxb.20220928001 .
null
王可心, 包云轩, 朱承瑛, 等, 2021.随机森林回归法在冬季路面温度预报中的应用[J].气象47(1): 82-93.DOI: 10.7519/j.issn.1000-0526.2021.01.008.Wang K X
null
Bao Y X Zhu C Y, et al, 2021.Forecasts of road surface temperature in winter based on random forests regression[J].Meteorology Monthly47(1): 82-93.DOI: 10.7519/j.issn.1000-0526.2021.01.008 .
null
王胜, 田红, 吴蓉, 等, 2022.2022年安徽省区域性高温和干旱过程综合评估[J].干旱气象40(5): 771-779.DOI: 10.11755/j.issn.1006-7639(2022)-05-0771.Wang S
null
Tian H Wu R, et al, 2022.Comprehensive assessment of regional high temperature and drought processes in Anhui province in 2022[J].Journal of Arid Meteorology40(5): 771-779.DOI: 10.11755/j.is- sn.1006-7639(2022)-05-0771 .
null
肖玉华, 赵静, 蒋丽娟, 2010.数值模式预报性能的地域性特点初步分析[J].暴雨灾害29(4): 28-33.DOI: 10.3969/j.issn.1004-9045.2010.04.004.Xiao Y H
null
Zhao J Jiang L J2010.Analysis on geography & physiognomy character of numerical model prediction performance[J].Torrential Rain and Disasters29(4): 28-33.DOI: 10.3969/j.issn.1004-9045.2010.04.004 .
null
薛谌彬, 陈娴, 张瑛, 等, 2019.ECMWF高分辨率模式2m 温度预报误差订正方法研究[J].气象45(6): 831-842.DOI: 10.7519/j.issn.1000-0526.2019.06.009.Xue C B
null
Chen X Zhang Y, et al, 2019.Bias correction method for the 2m temperature forecast of ECMWF high resolution model[J].Meteorological Monthly45(6): 831-842 (in Chinese).DOI: 10.7519/j.issn.1000-0526.2019.06.009 .
null
姚望玲, 陈正洪, 向玉春, 2010.武汉市气候变暖与极端天气事件变化的归因分析[J].气象36(11): 88-94.
null
Yao W L Chen Z H Xiang Y C2010.DOI: 10.7519/j.issn.1000-0526.2010.11.013.Trends in climate extremes in association with climate warming in Wuhan [J].Meteorology Monthly36(11): 88-94.DOI: 10.7519/j.issn.1000-0526.2010.11.013 .
null
叶宇辰, 陈海山, 朱司光, 等, 2024.基于机器学习的中国夏季降水延伸期预报及土壤湿度的可能贡献[J].高原气象.43(1): 184-198.DOI: 10.7522/j.issn.1000-0534.2023.00025.Ye Y C
null
Chen H S Zhu S G, et al, 2024.Machine learning-based prediction of summer extended-range precipitation and possible contribution of soil moisture over China[J].Plateau Meteorology.2024, 43(1): 184-198.DOI: 10.7522/j.issn.1000-0534.2023.00025 .
null
张延彪, 陈明轩, 韩雷, 等, 2022.数值天气预报多要素深度学习融合订正方法[J].气象学报80(1): 153-167.DOI: 10.11676/qxxb2021.066.Zhang Y B
null
Chen M X Han L, et al, 2022.Multi-element deep learning fusion correction method for numerical weather prediction[J].Acta Meteorologica Sinic80(1): 153-167.DOI: 10.11676/qxxb2021.066 .
null
钟敏, 肖安, 许冠宇, 等, 2022.基于CMA-MESO的分级短时强降水概率预报方法研究[J].干旱气象40(4): 700-709.DOI: 10.11755/j.issn.1006-7639(2022)-04-0700.Zhong M
null
Xiao A Xu G Y, et al, 2022.Study on probability forecast method about graded short-term heavy rain based on CMA-MESO[J].Journal of Arid Meteorology40(4): 700-709.DOI: 10.11755/j.issn.1006-7639(2022)-04-0700 .
null
周慧, 朱彬, 陈万隆, 等, 2005.动态学习率神经网络预测气温的尝试[J].大气科学学报28(3): 398-403.
null
Zhou H Zhu B Chen W L, et al, 2005.Daily air temperature predication using a dynamic learning rate neural network system[J].Transactions of Atmospheric Sciences28(3): 398-403.
null
朱浩楠, 刘晓冉, 孙佳, 等, 2021.基于遥感和数值模拟的重庆海绵城市热岛效应分析[J].高原气象40(5): 1202-1212.DOI: 10.7522/j.issn.1000-0534.2020.00089.Zhu H N
null
Liu X R Sun J, et al, 2021.Evaluation of the urban heat island effect of sponge city in Chongqing using satellite remote sensing data and numerical simulation[J].Plateau Meteorology40(5): 1202-1212.DOI: 10.7522/j.issn.1000-0534.2020.00089 .
文章导航

/