收稿日期: 2023-10-10
修回日期: 2024-02-05
网络出版日期: 2024-08-30
基金资助
国家自然科学基金重大项目(42090032); 风云卫星应用先行计划项目(FY-APP-ZX-2022.01); 风云三号03批卫星工程项目 〔FY-3(03)-AS-11.08〕
A Study on Effects of Himawari-8 Based AOD Data on 3DVar of CMA-MESO/CUACE CW
Received date: 2023-10-10
Revised date: 2024-02-05
Online published: 2024-08-30
CMA-MESO/CUACE CW化学天气耦合模式是自主研发的大气化学耦合模式, 目前CMA-MESO/CUACE CW 3DVar同化系统实现了地面气溶胶观测可吸入颗粒物PM2.5和PM10的同化, 为增强耦合同化系统非常规观测的同化能力, 文中在CMA-MESO大气化学天气耦合三维变分同化框架基础上, 利用查表法获得气溶胶消光系数, 然后建立气溶胶光学厚度(Aerosol Optical Depth, AOD)和气溶胶组分之间关系的观测算子、 切线性观测算子和伴随观测算子, 实现AOD观测资料的同化应用。针对2016年12月18 -20日华北、 黄淮地区一次污染天气过程进行同化预报试验, 试验结果表明同化葵花-8卫星(Himawari-8)气溶胶光学厚度观测后, PM2.5分析的重污染区范围有所扩大, 山西东南部分析与实况分布更为接近, 但是山东大部地区PM2.5分析偏强, 与观测相比PM2.5质量浓度存在高估。同时同化Himawari-8 AOD观测和地面气溶胶站点观测的PM2.5分析最优, 分析与观测距平相关系数最高, 平均偏差、 均方根误差及标准差最小。重污染区的PM2.5预报检验结果表明, 同化Himawari-8 AOD观测对大于350 μg·m-3量级PM2.5预报正贡献可以持续到48 h, 但整体来说, 同时同化Himawari-8 AOD观测和地面气溶胶站点观测对各个量级的PM2.5质量浓度预报质量最优。
田伟红 , 庄照荣 , 韩威 , 沈学顺 . 葵花-8 卫星AOD资料在CMA-MESO/CUACE CW 3DVar同化系统中的个例应用研究[J]. 高原气象, 2024 , 43(5) : 1259 -1270 . DOI: 10.7522/j.issn.1000-0534.2024.00016
The CMA-MESO/CUACE CW is an atmospheric chemistry coupled model independently developed by China.At present, the CMA-MESO/CUACE CW 3DVar system realized the assimilation of ground-based aerosol observations of PM2.5 and PM10.In order to enhance the assimilation capability of the coupled assimilation system for non-conventional observations, based on the CMA-MESO three-dimensional variational assimilation framework of atmospheric chemical weather coupled system, the aerosol extinction coefficient is obtained by using the look-up table method.And then the observation operator, the tangent linear operator and the adjoint operator are established using the relationship between aerosol optical depth (AOD) and aerosol components.The assimilation tests were carried out for a haze process in North China on December 18 -20, 2016.The results show that after assimilating the AOD observations from the Himawari-8 satellite, the heavily polluted area of the PM2.5 is enlarged, and the analysis in southeastern Shanxi is closer to the actual situation, but the analysis of PM2.5 in the majority of the Shandong region is overestimated.The simultaneous assimilation of Himawari-8 AOD observations and ground-based aerosol concentration observations test is the best for the analysis of PM2.5, it has the highest correlation coefficients (ACCs) and the smallest mean bias, root-mean-square error and standard deviation.The PM2.5 forecast results in the heavily polluted area showed that the positive contribution of the assimilated Himawari-8 AOD observations to the PM2.5 forecasts for the >350 μg·m-3 magnitude could be sustained up to 48 h.However, the simultaneous assimilation of the Himawari-8 AOD observations and the ground-based aerosol site observations had the best test scores of PM2.5 forecasts for each magnitude.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 白晓平, 李江, 方栋, 等, 2007.资料同化在空气质量预报中的应用[J].地球科学进展, 22(1): 66-73.DOI: 10.3321/j.issn: 1001-8166.2007.01.009.Bai X P , |
null | |
null | 陈德辉, 沈学顺, 2006.新一代数值预报系统GRAPES研究进展[J].应用气象学报, 17(6): 773-777.DOI: 10.11898/1001-7313.20060614.Chen D H , |
null | |
null | 陈德辉, 薛纪善, 杨学胜, 等, 2008.GRAPES新一代全球/区域多尺度统一数值预报模式总体设计研究[J].科学通报, 53(20): 2396-2407.DOI: 10.3321/j.issn: 0023-074X.2008.20.002.Chen D H , |
null | |
null | 冯沁, 鲍艳松, 闵锦忠, 等, 2018.卫星气溶胶光学厚度资料同化对灰霾预报改进个例研究[J].气象学报, 76(1): 104-116.DOI: 10.11676/qxxb2017.081.Feng Q , |
null | |
null | 黄丽萍, 陈德辉, 邓莲堂, 等, 2017.GRAPES_Meso V4.0 主要技术改进和预报效果检验[J].应用气象学报, 28(1): 25-37.DOI: 10.11898/1001-7313.20170103.Huang L P , |
null | |
null | 黄丽萍, 邓莲堂, 王瑞春, 等, 2022.CMA-MESO关键技术集成及应用[J].应用气象学报, 33(6): 641-654.DOI: 10.11898/1001-7313.20220601.Huang L P , |
null | |
null | 刘超, 马学款, 2017.2016年12月大气环流和天气分析[J].气象, 43(3): 378-384.LiuC, MaX K, 2017.Analysis of the December 2016 atmospheric circulation and weather[J].Meteorological Monthly, 43(3): 378-384. |
null | 马旭林, 庄照荣, 薛纪善, 等, 2009.GRAPES非静力数值预报模式的三维变分资料同化系统的发展[J].气象学报, 67(1): 50-60.DOI: 10.3321/j.issn: 0577-6619.2009.01.006.Ma X L , |
null | |
null | 王宏, 龚山陵, 张红亮, 等, 2009.新一代沙尘天气预报系统 GRAPES_CUACE/Dust: 模式建立、 检验和数值模拟[J].科学通报, 54(24): 3878-3891.DOI: 10.1007/s11434-009-0481-z.Wang H , |
null | |
null | 王宏, 石广玉, |
null | |
null | 夏晓丽, 2021.新一代气象卫星气溶胶资料同化在大气污染模拟中的应用研究[D].南京: 南京信息工程大学.Xia X L, 2021.Research on the application of new generation meteorological satellite aerosol data assimilation in atmospheric pollution modeling[D].Nanjing: Nanjing University of Information Science and Technology. |
null | 薛纪善, 庄世宇, 朱国富, 等, 2008.GRAPES新一代全球/区域变分同化系统研究[J].科学通报, 53(20): 2408-2417.DOI: 10.3321/j.issn: 0023-074X.2008.20.003.Xue J S , |
null | |
null | 张华, 薛纪善, 庄世宇, 等, 2004.GRAPES三维变分同化系统的理想试验[J].气象学报, 62(1): 31-41.DOI: 10.3321/j.issn: 0577-6619.2004.01.004.Zhang H , |
null | |
null | 庄世宇, 薛纪善, 朱国富, 等, 2005.GRAPES全球三维变分同化系统--基本设计方案与理想试验[J].大气科学, 29(6): 872-884.DOI: 10.3878/j.issn.1006-9895.2005.06.04.Zhuang S Y , |
null | |
null | 庄照荣, 王皓, 田伟红, 等, 2023.基于区域CMA-MESO三维变分系统的化学同化框架设计及气溶胶观测的初步分析预报试验[J].气象学报, 81(3): 456-468.DOI: 10.11676/qxxb2023.20220069.Zhuang Z R , |
null |
/
〈 |
|
〉 |