滇中“三湖”流域水面蒸发计算研究

  • 艾永智 ,
  • 杨韬 ,
  • 杨文春 ,
  • 申文熙 ,
  • 孙秀芬 ,
  • 谷桂华
展开
  • 1. 玉溪市气象局,云南 玉溪 653100
    2. 云南省水文水资源局玉溪分局,云南 玉溪 653100

艾永智(1972 -), 男, 云南省通海人, 高级工程师, 主要从事气候变化监测及影响研究. E-mail:

收稿日期: 2023-06-24

  修回日期: 2024-02-04

  网络出版日期: 2024-09-13

基金资助

中国气象局/农业农村部开放式研究基金项目(KYZX2022-09); 云南省气象局科研项目(YZ202419)

Study of Calculation Water Surface Evaporation in theThree LakesBasin of Central Yunnan

  • Yongzhi AI ,
  • Tao YANG ,
  • Wenchun YANG ,
  • Wenxi SHEN ,
  • Xiufen SUN ,
  • Guihua GU
Expand
  • 1. Yuxi Meteorological Bureau,Yuxi 653100,Yunnan,China
    2. Yuxi Branch of Yunnan Hydrology and Water Resources Bureau,Yuxi 653100,Yunnan,China

Received date: 2023-06-24

  Revised date: 2024-02-04

  Online published: 2024-09-13

摘要

为科学精准地计算滇中地区水面蒸发量, 基于“三湖”径流区附近玉溪气象站2014 -2021年逐月气象观测资料, 用对比分析、 相关分析等方法分析了FAO PPP-17 Penman公式在该地区水面蒸发计算中的使用效果和误差来源。在此基础上, 针对计算误差产生的原因和周期性变化规律, 引入Morton经验公式等方法, 将Penman公式中的水面反射率、 太阳辐射参数作了随季节而变化的动态化改进。同时基于热量平衡原理, 用误差反推法推导出了一个新的水面热通量估算模型, 并在FAO PPP-17 Penman公式中增加水面热通量项以修正水面热量收支平衡。结果表明: (1)FAO PPP-17 Penman公式计算的研究区水面蒸发量普遍偏大, 平均相对误差为+15.2%, 且误差具有冬季小而夏季大的季节性特征和类似正弦曲线的周期变化规律。计算误差主要源于公式中太阳短波辐射参数取值不当以及忽略了水面热通量的影响, 导致热量收支不平衡。(2)对公式进行动态化参数改进并增加水面热通量后, 计算精度明显提高, 相对误差在±5%、 ±10%和±20%内的准确率比修正前分别提高了40.6%、 42.7%和32.3%。异地使用效果也表明, 改进后的FAO PPP-17 Penman公式在滇中“三湖”径流区内仍具有较高的拟合准确率, ±10%误差范围内的拟合准确率在75%以上。(3)本研究推导出的水面热通量非线性估算模型, 能够合理模拟水体储热量对季节变化和水面辐射强弱的非线性响应, 在滇中“三湖”地区的蒸发计算中取得较满意的结果。

本文引用格式

艾永智 , 杨韬 , 杨文春 , 申文熙 , 孙秀芬 , 谷桂华 . 滇中“三湖”流域水面蒸发计算研究[J]. 高原气象, 2024 , 43(5) : 1302 -1311 . DOI: 10.7522/j.issn.1000-0534.2024.00012

Abstract

In order to scientifically and accurately calculate the water surface evaporation in the central Yunnan region, based on the monthly meteorological data from Yuxi Meteorological Station near the 'Three Lakes' basin in Central Yunnan from 2014 to 2021, the effectiveness of the FAO PPP-17 Penman formula in calculating water evaporation in this area and the error sources is analyzed through comparative analysis and correlation analysis.On this basis, aiming at the sources of calculation errors and the characteristics of seasonal changes, the water surface reflectance and the solar radiation parameters in the Penman formula are dynamically modified with the season changes using Morton empirical formula and other methods.Furthermore, based on the principle of heat balance, a new estimation model of water surface heat flux was derived by using error inverse derivation.The water surface heat flux term is added to the FAO PPP-17 Penman formula to correct the heat balance of the water surface.The results showed that: (1) The water evaporation calculated by the FAO PPP-17 Penman formula in the study area was generally overestimated, with a mean relative error of +15.2%.The error has seasonal characteristics of small in winter and large in summer, and periodic variation characteristics which is similar to a sine curve.The calculation error mainly stems from the inappropriate value of solar short-wave radiation parameters in the formula and the neglect of the influence of water surface heat flux, resulting in an imbalance in the heat budget.(2) After dynamically improving the parameters of the FAO PPP-17 Penman formula and adding the water surface heat flux to it, the calculation accuracy is significantly improved.Compared to the unrevised version, the accuracy with relative errors within ± 5%, ± 10%, and ± 20% increased by 40.6%, 42.7%, and 32.3%, respectively.The results of off-site tests show that the optimized Penman equation exhibits high fitting accuracy in the ‘Three Lakes’ basin of central Yunnan, and the model's accuracy with relative errors within ±10% is over 75%.(3) This study developed a nonlinear estimation model for water surface heat flux, which can reasonably simulate the nonlinear response of water storage heat to seasonal variations and water surface radiation intensity.Furthermore, the model has demonstrated satisfactory results in evaporation calculations within the "Three Lakes" region.

参考文献

null
Allen R G Pereira L S Raes D, et al, 1998.Crop evapotranspiration-guidelines for computing crop water requirements(FAO Irrigation and Drainage Paper No.56)[M].Rome: Food and Agriculture Organization of the United Nations.
null
Allen R G Smith M Pereira L S, et al, 1994.An update for the calculation of reference evapotranspiration[J].International Commission on Irrigation and Drainage Bulletin43(2): 35-92.
null
Penman H L1948.Natural evaporation from open water, bare soil and grass[J].Proceedings of the Royal Society of London Series A193(1032): 120-146.DOI: 10.1098/rspa.1948.0037 .
null
安顺清, 邢久星, 1983.运用彭曼公式计算潜在蒸散量及潜在蒸散量月值划为旬值的方法[J].气象科技(1): 66-70.DOI: 10. 19517/j.1671-6345.1983.01.014.An S Q , Xing J X, 1983.Using the Penman formula to calculate potential evapotranspiration and dividing monthly potential evapotranspiration values into ten-day values[J].Meteorological Technology (1): 66-70.DOI: 10.19517/j.1671-6345.1983.01.014 .
null
陈永福, 吴蓓蓓, 王晶晶, 2012.基于多变量经验概率模型的中国粮食产量模拟预测分析[J].系统工程理论与实践32(11): 2363-2371.
null
Chen Y F Wu B B Wang J J2012.Short run forecasting on China's cereals production: a simulation by multivariate empirical probability distributions model[J].Systems Engineering-Theory & Practice32(11): 2363-2371.
null
邓根云, 1979.水面蒸发量的一种气候学计算方法[J].气象学报37(3): 87-96.
null
Deng G Y1979.A climatic calculative method of evaporation from open water [J].Acta Meteorologica Sinica37(3): 87-96.
null
封志明, 杨艳昭, 丁晓强, 等, 2004.甘肃地区参考作物蒸散量时空变化研究[J].农业工程学报20(1): 99-103.
null
Feng Z M Yang Y Z Ding X Q, et al, 2004.Temporal-spatial changing characteristics of reference crop evapotranspiration in Gansu Province[J].Transactions of the Chinese Society of Agricultural Engineering20(1): 99-103.
null
付学功, 董晓丽, 1995.彭曼(Penman)公式在河北平原的应用[J].河北水利科技16(2): 8-12.
null
Fu X G Dong X L1995.Application of Penman formula in the Hebei Plain [J].South-to-North Water Transfers and Water Science and Technology16 (2): 8-12.
null
高洁, 赵勇, 姚俊强, 等, 2022.气候变化背景下中亚干旱区大气水分循环要素时空演变[J].干旱区研究39(5): 1371-1384.DOI: 10.13866/j.azr.2022.05.04.Gao J
null
Zhao Y Yao J Q, et al, 2022.Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change[J].Arid Zone Research39(5): 1371-1384.DOI: 10.13866/j.azr.2022.05.04 .
null
郭生练, 程肇芳, 1994.流域蒸散发的气候学计算[J].水文(5): 16-22+64-65.DOI: 10.19797/j.cnki.1000-0852.1994.05. 004.Guo S L , Cheng Z F, 1994.Estimation of catchment evapotranspiration by climatic approach[J].Journal of China Hydrology(5): 16-22+64-65.DOI: 10.19797/j.cnki.1000-0852. 1994.05.004 .
null
胡顺军, 潘渝, 康绍忠, 等, 2005.Penman-Monteith与Penman修正式计算塔里木盆地参考作物潜在腾发量比较[J].农业工程学报21(6): 30-35.
null
Hu S J Pan Y Kang S Z, et al, 2005.Comparison of the reference crop evapotranspiration estimated by the Penman-Monteith and Penman methods in Tarim River Basin[J].Transactions of the Chinese Society of Agricultural Engineering21(6): 30-35.
null
黄英, 方绍东, 王宇, 2003.云南省水面蒸发量不同计算方法比较[C]//中国水利学会青年科技工作委员编著.中国水利学会首届青年科技论坛论文集.北京: 中国水利水电出版社, 165-172.
null
Huang Y Fang S D Wang Y2003.Comparison of different calculation methods for water surface evaporation in Yunnan Province[C]//The Youth Science and Technology Working Committee of Chinese Hydraulic Engineering Society, eds.Collected Papers of the First Youth Science and Technology Forum of Chinese Hydraulic Engineering Society.Beijing: China Water & Power Press, 165-172.
null
牛振红, 孙明, 2003.水面蒸发折算系数的对比观测实验与分析计算[J].水文23( 3): 49-51.
null
Niu Z H Sun M2003.Analysis and comparison of experiment for conversion coefficient of water surface evaporation [J].Journal of China Hydrology23 (3): 49-51.
null
荣艳淑, 巩琳, 卢寿德, 2018.云南2009-2014年持续性气象水文干旱特征及成因分析[J].水资源保护34(3): 22-29.DOI: 10.3880/j.issn.1004-6933.1981.03.04.Rong Y S
null
Gong L Lu S D2018.Analysis on characteristics and causes of persistent meteorological and hydrological drought in Yunnan from 2009 to 2014[J].Water Resources Protection34( 3): 22-29.DOI: 10.3880/j.issn.1004-6933.1981.03.04 .
null
施成熙, 牛克源, 陈天珠, 等, 1986.水面蒸发器折算系数研究[J].地理科学6( 4): 305-313.DOI: 10.13249/j.cnki.sgs.1986.04.005.Shi C X
null
Niu K Y Chen T Z, et al, 1986.The study of pan coefficients of evaporation pans of water[J].Scientia Geogrophica Sinica6(4): 305-313.DOI: 10.13249/j.cnki.sgs.1986.04.005 .
null
孙芹芳, 1981.10平方米蒸发池水面蒸发实验研究[J].水文(4): 35-40.DOI: 10.19797/j.cnki.1000-0852.1981.04.011.Sun Q F , 1981.Experimental study on water surface evaporation in a 10 square meter evaporation pool[J].Journal of China Hydrology(4): 35-40.DOI: 10.19797/j.cnki.1000-0852.1981.04.011 .
null
孙夏利, 费良军, 李学军, 2009.我国水面蒸发研究与进展[J].水资源与水工程学报20(4): 17-22+25.
null
Sun X L Fei L J Li X J2009.Research and development of water surface evaporation in China[J].Journal of Water Resources and Water Engineering20(4): 17-22+25.
null
童宏良, 1989.我国蒸发力计算的气候学方法[J].南京气象学院学报12(1): 19-33.DOI: 10.13878/j.cnki.dqkxxb.1989.01. 003.Tong H L , 1989.A climatic calculation method for the evaporation power in China[J].Journal of Nanjing Institute of Meteorology, 12(1): 19-33.DOI: 10.13878/j.cnki.dqkxxb.1989. 01.003 .
null
王梅, 王建波, 那景坤, 2004.E-601型蒸发器水面蒸发实验分析[J].黑龙江水专学报31(3): 10-12.DOI: 10.13524/j.2095-008x.2004.03.004.Wang M
null
Wang J B Na J K2004.Analysis on test of the surface evaporation for the E-601 type of evaporator[J].Journal of Heilongjiang Hydraulic Engineering College31(3): 10-12.DOI: 10.13524/j.2095-008x.2004.03.004 .
null
王晓丹, 张勃, 马彬, 等, 2022.基于日值SPEI东北地区近58a干旱时空演变特征[J].高原气象41(3): 721-732.DOI: 10.7522/j.issn.1000-0534.2021.00015.Wang X D
null
Zhang B Ma B, et al, 2022.Spatial and temporal evolution of drought in Northeast China in recent 58 years based on daily SPEI[J].Plateau Meteorology41(3): 721-732.DOI: 10.7522/j.issn.1000-0534.2021.00015 .
null
王永义, 2006.水面蒸发计算方法及其检验[J].地下水28(1): 15-16, 22+22.
null
Wnag Y Y2006.Calculation method and verification of water surface evaporation[J].Ground Water28(1): 15-16, 22+22.
null
王远明, 张祎, 李成荣, 1999.宜昌站水面蒸发折算系数分析[J].人民长江30(1): 41-42+45.DOI: 10.16232/j.cnki.1001-4179.1999.01.016.Wang Y M
null
Zhang Y Li C R1999.Analysis of the conversion coefficient of water surface evaporation at Yichang station[J].Yangtze River30 (1): 41-42+45.DOI: 10.16232/j.cnki.1001-4179.1999.01.016 .
null
张强, 邹旭恺, 陈鲜艳, 等, 2022.考虑多尺度和蒸散影响的新干旱指数研究——以云南为例[J].高原气象41(4): 909- 920.DOI: 10.7522/j.issn.1000-0534.2021.00026.Zhang Q
null
Zou X K Chen X Y, et al, 2022.A new drought index study that takes into account a multi-tim escale and the effects of evapotranspiration-taking Yunnan as an example[J].Plateau Meteorology41(4): 909-920.DOI: 10.7522/j.issn.1000-0534.2021.00026 .
null
张子涵, 王学佳, 杨梅学, 等, 2023.黄河上游水源涵养区近 60 年关键气候要素的时空变化[J].高原气象42(6): 1372-1385.DOI: 10.7522/j.issn.1000-0534.2023.00011.Zhang Z H
null
Wang X J Yang M X, et al, 2023.Spatio‐temporal changes of key climatic elements in the Up‐per Yellow River Water Conservation Area in recent 60 years[J].Plateau Meteorology42(6): 1372-1385.DOI: 10.7522/j.issn.1000-0534.2023.00011 .
null
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017. 干湿气候等级: GB/T 34307-2017 [S].北京: 中国标准出版社: 12.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China, 2017.Grades of dry/wet climate: GB/T 34307-2017 [S].Beijin: Standards Press of China: 12.
null
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017. 气象干旱等级: GB/T 20481-2017 [S].北京: 中国标准出版社: 8-13.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China, 2017.Grades of meteorological drought: GB/T 20481-2017 [S].Beijing: Standards Press of China: 8-13.
文章导航

/