收稿日期: 2023-07-20
修回日期: 2024-01-12
网络出版日期: 2024-09-13
基金资助
中国地质调查局自然资源综合调查指挥中心科创基金项目(KC20220003); 自然资源要素耦合过程与效应重点实验室开放课题(2022KFKTC007); 中国地质调查局项目(DD20220881)
Comparison of the Variation Characteristics and Influencing Factors of Evapotranspiration in Two Alpine Grasslands on the Qinghai-Xizang Plateau
Received date: 2023-07-20
Revised date: 2024-01-12
Online published: 2024-09-13
在全球变暖的背景下, 青藏高原通过感热加热和潜热释放改变大气环流, 不仅影响高原生态系统的水分收支平衡与能量平衡, 还对亚洲乃至全球气候起着重要的调节作用。为探究青藏高原高寒草地生态系统蒸散发在不同区域的变化特征及影响因子, 加深对高原气候变化的理解和生态水文过程的了解, 基于2022年观测到的涡动及气象资料, 对比分析了思金拉措(季节冻土)、 沱沱河(多年冻土)两地相同海拔处的高寒草地生态系统实际蒸散发量的变化特征及环境影响因素。结果表明: (1)两地环境因子相差较大的是风速、 空气温度、 降雨量, 沱沱河站风速远大于思金拉措站; 年均气温、 降雨量均低于思金拉措站。(2)思金拉措站夜间蒸散发日内小时平均值大于沱沱河站, 白天则相反; 两站日蒸散量变化趋势特征相近, 思金拉措站蒸散量急剧增大时间和最大值出现时间均早于沱沱河站; 两站月蒸散量均为单峰型, 夏季7月蒸散量最大, 冬季12月、 1月、 2月较小。(3)风速、 大地辐射在两站与蒸散量具有不同的相关性, 风速在沱沱河站较大, 与蒸散发相关性较强, 在思金拉措站风速小, 两者相关性较弱, 大地辐射在两地与蒸散发的相关性则正好相反; 在两地与蒸散量相关性均较大的是空气温度、 水汽压、 大气逆辐射, 均较弱的是空气湿度、 饱和水汽压差, 最弱的是降雨。(4)降雨虽然是蒸散水分的主要来源, 但在青藏高原, 冰川冻土融水也是蒸散水份的重要来源, 因此降雨对两地蒸散发量影响较小。
蒲春 , 杨斌 , 赵阳刚 , 罗伦 , 张浔浔 , 段阳海 . 青藏高原两处高寒草地蒸散发的变化特征及影响因子对比[J]. 高原气象, 2024 , 43(5) : 1102 -1112 . DOI: 10.7522/j.issn.1000-0534.2024.00002
In the context of global warming, the Qinghai-Xizang Plateau is altering atmospheric circulation through sensible heat absorption and latent heat release.This not only impacts the water and energy balance of the plateau's ecosystem but also plays a crucial role in regulating Asian and global climates.In order to explore the change characteristics and influencing factors of evapotranspiration in different regions of alpine grassland ecosystem on the Qinghai-Xizang Plateau, and deepen understanding of plateau climate change and hydrological-ecological processes, based on the observed eddy and meteorological data in 2022, the variation characteristics and environmental influencing factors of actual evapotranspiration of alpine grassland ecosystems at the same altitude in Sijinlacuo (seasonal permafrost) and Tuotuo River (permafrost) on the Qinghai-Xizang Plateau were compared and analyzed.The results show that: (1) Significant differences existed between environmental factors at these two sites, particularly in wind speed, air temperature, and precipitation.The wind speed at Tuotuo River station greatly exceeded that at Shijinlasuo station; annual average air temperature and precipitation were lower at Tuotuo River station.(2) The average hourly evapotranspiration of Sijinlacuo Station at night was higher than those recorded at Tuotuo River Station, however, this trend reverses during daytime hours.The variation characteristics of daily evapotranspiration at the two stations had a similar trend.The date of sharp increase and maximum of evapotranspiration at Sijinlacuo Station were earlier than those at Tuotuo River Station.The monthly evapotranspiration of the two stations were unimodal, with the maximum value appeared in July in summer and the smaller value appeared in December, January and February in winter.(3) Wind speed and ground radiation showed differing correlations with evaporation across both stations.Wind speed had a stronger correlation with evaporation at Tuotuo River Station due to higher wind speeds compared to weaker correlations observed for Sijinlasuo Station where winds were less intense.Conversely, ground radiation showed opposite correlations with evaporation between both locations.Air temperature, water vapor pressure, and atmospheric longwave radiation demonstrated strong correlations with evaporation across both locations while air humidity, saturated water vapor pressure difference, and precipitation displayed weaker associations.Precipitation exhibited the weakest correlation.(4) Although precipitation served as the primary source of evaporated water content, sources such as glacier melt water and thawing permafrost played significant roles as well on the Qinghai-Xizang Plateau, resulting in subdued influence of precipitation on the evaporative process at both locations.These results contribute valuable insights into understanding regional variations in high-altitude grassland ecosystems' response to changing climatic conditions on the Qinghai-Xizang Plateau.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 常娜, 李茂善, 王灵芝, 等, 2022.峨眉山地区近地层微气象特征研究[J].高原气象, 41(1): 226-240.DOI: 10.7522/j.issn.1000-0534.2021.00111.Chang N , |
null | |
null | 陈贝, 张文贤, 2017.藏东南地区季节性冻土研究[J].海峡科技与产业, 11: 56-57+63. |
null | |
null | 郭小娇, 石建省, 2019.水分蒸散发研究国内外进展与趋势[J].地质评论, 65(6): 1473-1486.DOI: 10.16509/j.georeview.2019.06.014.Guo X J , |
null | |
null | 花圣卓, 蔡昕, 余新晓, 2016.平坦下垫面植被蒸散特征及对气象因素的响应研究[J].水土保持学报, 30(3): 344-354.DOI: 10.13870/j.cnki.stbcxb.2016.03.058.Hua S Z , |
null | |
null | 黄会平, 曹明明, 宋进喜, 等, 2015.1957-2012年中国参考作物蒸散量时空变化及其影响因子分析[J].自然资源学报, 30(2): 315-326.DOI: 10.11849/zrzyxb.2015.02.014.Huang H P , |
null | |
null | 李婧梅, 蔡海, 程茜, 等, 2012.青海省三江源地区退化草地蒸散特征[J].草业学报, 3(21): 223-233.DOI: 1004-5759(2012)03-0223-11.Li J M , |
null | |
null | 李文静, 罗斯琼, 郝晓华, 等, 2021.青藏高原东部不同季节积雪过程对地表能量和土壤水热影响的观测研究[J].高原气象, 40(3): 455-471.DOI: 10.7522/j.issn.1000-0534.2020.00001.Li W J , |
null | |
null | 梁顺林, 白瑞, 陈晓娜, 等, 2020.2019年中国陆表定量遥感发展综述[J].遥感学报, 24(6): 618-671.DOI: 10.11834/jrs.20209476.Liang S L , |
null | |
null | 邱中齐, 周琳琳, 刘红娟, 等, 2022.玉米农田生态系统蒸散发模型参数优化[J].灌溉排水学报, 41(1): 33-40.DOI: 10.13522/j.cnki.ggps.2021294.Qiu Z Q , |
null | |
null | 尚程鹏, 吴通华, 姚济敏, 等, 2022.不同互补模型对青藏高原多年冻土区地表实际蒸散发的模拟能力评估[J].高原气象, 41(3): 541-557.DOI: 10.7522/j.issn.1000-0534.2021.00054.Shang C P , |
null | |
null | 宋璐璐, 尹云鹤, 吴绍洪, 2012.蒸散发测定方法研究进展[J].地理科学进展, 31(9): 1186-1195.DOI: 10.11820/dlkxjz.2012.09.010.Song L L , |
null | |
null | 孙树娇, 周秉荣, 周华坤, 等, 2021.青藏高原典型高寒荒漠生长季蒸散及水分消耗特征研究[J].草地学报, 29(S1): 137-145.DOI: 10.11733/j.issn.1007-0435.2021.Z1.016.Sun S J , |
null | |
null | 田露, 郭伟, 倪向南, 等, 2023.青海湖地区潜在蒸散发变化特征及影响因子分析[J].地球环境学报, 14(3): 328-338.DOI: 10.7515/JEE222058.Tian L , |
null | |
null | 王利辉, 何晓波, 丁永建, 2019.青藏高原中部高寒草甸蒸散发特征及其影响因素[J].冰川冻土, 41(4): 801-808.DOI: 10.7522/j.issn.1000-0240.2017.0329.Wang L H , |
null | |
null | 王树舟, 马耀明, 吴文玉, 2023.基于Noah-MP陆面模式的青藏高原地表感热和潜热通量分布及变化特征[J].高原气象, 42(1): 25-34.DOI: 10.7522/j.issn.1000-0534.2022.00036.Wang S Z , |
null | |
null | 王秀英, 周秉荣, 陈奇, 等, 2022.青藏高原典型高寒草甸和高寒沼泽湿地植被耗水规律研究[J].高原气象, 41(2): 338-348.DOI: 10.7522/j.issn.1000-0534.2021.00079.Wang X Y , |
null | |
null | 王云英, 裴薇薇, 王新, 等, 2023.青藏高原不同植被类型草地蒸散量长期变化与适应性模型研究[J].干旱区资源与环境, 37(3): 85-90.DOI: 10.13448/j.cnki.jalre.2023.065.Wang Y Y , |
null | |
null | 王梓月, 罗斯琼, 李文静, 等, 2022.青藏高原东部多、 少雪年地表能量和水分特征对比研究[J].高原气象, 41(2): 444-464.DOI: 10.7522/j.issn.1000-0534.2022.00017.Wang Z Y , |
null | |
null | 温馨, 周纪, 刘绍民, 等, 2021.基于多源产品的西南河流源区地表蒸散发时空特征[J].水资源保护, 37(3): 32-42.DOI: 10.3880/j.issn.1004-6933.2021.03.006.Wen X , |
null | |
null | 吴小丽, 刘桂民, 李新星, 等, 2021.青藏高原多年冻土和季节性冻土区土壤水分变化及其与降水的关系[J].水文, 41(1): 73-78+101.DOI: 10.19797/j.cnki.1000-0852.20190430.Wu X L , |
null | |
null | 谢虹, 鄂崇毅, 2014.青藏高原参考蒸散发时空变化特征及影响因素[J].青海师范大学学报(自然科学版), 4: 52-59.DOI: 10.16229/j.cnki.issn1001-7542.2014.04.009.Xie H , E C Y, 2014.The spatiotemporal characteristics of evapotranspiration and its related affecting meteorological variables on the Tibetan Plateau[J].Journal of Qinghai Normal University(Natural Science), 4: 52-59.DOI: 10.16229/j.cnki.issn1001-7542.2014. 04.009 . |
null | 徐自为, 刘绍民, 徐同仁, 等, 2009.涡动相关仪观测蒸散量的插补方法比较[J].地球科学进展, 24(4): 372-382.DOI: 10.3321/j.issn: 1001-8166.2009.04.003.Xu Z W , |
null | |
null | 姚檀栋, 陈发虎, 崔鹏, 等, 2017.从青藏高原到第三极和泛第三极[J].中国科学院院刊, 32(9): 924-931.DOI: 10.16418/j.issn.1000-3045.2017.09.001.Yao T D , |
null | |
null | 姚天次, 卢宏玮, 于庆, 等, 2020.近50 年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J].地球科学进展, 5(35): 534-546.DOI: 10.11867/j.issn.1001-8166.2020.031.Yao T C , |
null | |
null | 张戈, 赖欣, 刘康, 2023.黄河源区玛曲土壤冻融过程中地表水热交换特征分析[J].高原气象, 42(3): 575-589.DOI: 10.7522/j.issn.1000-0534.2022.00083.Zhang G , |
null | |
null | 张文旭, 王根绪, 胡兆永, 2022.三种蒸散发测算方法的比较——以青藏高原风火山地区为例[J].冰川冻土, 44(2): 1-10.DOI: 10.7522/j.issn.1000-0240.2023.0009.Zhang W X , |
null | |
null | 张亚春, 马耀明, 马伟强, 等, 2021.青藏高原不同下垫面蒸散量及其与气象因子的相关性[J].干旱气象, 39(3): 366-373.DOI: 10.11755/j.issn.1006-7639(2021)-03-0366.Zhang Y C , |
null | |
null | 赵冰茜, 2023.基于土壤水分动态变化对高寒山区降雨及蒸散发的估算[D].兰州: 兰州大学.Zhao B Q, 2023.Rainfall and evapotranspiration estimation from soil moisture dynamics in cold mountainous areas[D].Lanzhou: Lanzhou University. |
null | 朱立平, 鞠建廷, 乔宝晋, 等, 2019.“亚洲水塔”的近期湖泊变化及气候响应: 进展、 问题与展望 [J].科学通报, 64(27): 2796-2806.DOI: 10.1360/TB-2019-0185.Zhu L P , |
null |
/
〈 |
|
〉 |