青藏高原两处高寒草地蒸散发的变化特征及影响因子对比

  • 蒲春 ,
  • 杨斌 ,
  • 赵阳刚 ,
  • 罗伦 ,
  • 张浔浔 ,
  • 段阳海
展开
  • 1. 雅鲁藏布江中游自然资源西藏自治区野外科学观测研究站,中国地质调查局军民融合地质调查中心,四川 成都 610036
    2. 自然资源要素耦合过程与效应重点实验室,北京 100055

蒲春(1988 -), 男, 四川南充人, 高级工程师, 主要从事自然资源调查监测与研究. E-mail:

收稿日期: 2023-07-20

  修回日期: 2024-01-12

  网络出版日期: 2024-09-13

基金资助

中国地质调查局自然资源综合调查指挥中心科创基金项目(KC20220003); 自然资源要素耦合过程与效应重点实验室开放课题(2022KFKTC007); 中国地质调查局项目(DD20220881)

Comparison of the Variation Characteristics and Influencing Factors of Evapotranspiration in Two Alpine Grasslands on the Qinghai-Xizang Plateau

  • Chun PU ,
  • Bin YANG ,
  • Yanggang ZHAO ,
  • Lun LUO ,
  • Xunxun ZHANG ,
  • Yanghai DUAN
Expand
  • 1. Middle Yarlung Zangbo River Natural Resources Observation and Research Station of Tibet Autonomous Region,Civil-Military Integration Center of China Geological Survey,Chengdu 610036,Sichuan,China
    2. Key Laboratory of Coupling Process and Effect of Nature Resources Elements,Beijing 100055,China

Received date: 2023-07-20

  Revised date: 2024-01-12

  Online published: 2024-09-13

摘要

在全球变暖的背景下, 青藏高原通过感热加热和潜热释放改变大气环流, 不仅影响高原生态系统的水分收支平衡与能量平衡, 还对亚洲乃至全球气候起着重要的调节作用。为探究青藏高原高寒草地生态系统蒸散发在不同区域的变化特征及影响因子, 加深对高原气候变化的理解和生态水文过程的了解, 基于2022年观测到的涡动及气象资料, 对比分析了思金拉措(季节冻土)、 沱沱河(多年冻土)两地相同海拔处的高寒草地生态系统实际蒸散发量的变化特征及环境影响因素。结果表明: (1)两地环境因子相差较大的是风速、 空气温度、 降雨量, 沱沱河站风速远大于思金拉措站; 年均气温、 降雨量均低于思金拉措站。(2)思金拉措站夜间蒸散发日内小时平均值大于沱沱河站, 白天则相反; 两站日蒸散量变化趋势特征相近, 思金拉措站蒸散量急剧增大时间和最大值出现时间均早于沱沱河站; 两站月蒸散量均为单峰型, 夏季7月蒸散量最大, 冬季12月、 1月、 2月较小。(3)风速、 大地辐射在两站与蒸散量具有不同的相关性, 风速在沱沱河站较大, 与蒸散发相关性较强, 在思金拉措站风速小, 两者相关性较弱, 大地辐射在两地与蒸散发的相关性则正好相反; 在两地与蒸散量相关性均较大的是空气温度、 水汽压、 大气逆辐射, 均较弱的是空气湿度、 饱和水汽压差, 最弱的是降雨。(4)降雨虽然是蒸散水分的主要来源, 但在青藏高原, 冰川冻土融水也是蒸散水份的重要来源, 因此降雨对两地蒸散发量影响较小。

本文引用格式

蒲春 , 杨斌 , 赵阳刚 , 罗伦 , 张浔浔 , 段阳海 . 青藏高原两处高寒草地蒸散发的变化特征及影响因子对比[J]. 高原气象, 2024 , 43(5) : 1102 -1112 . DOI: 10.7522/j.issn.1000-0534.2024.00002

Abstract

In the context of global warming, the Qinghai-Xizang Plateau is altering atmospheric circulation through sensible heat absorption and latent heat release.This not only impacts the water and energy balance of the plateau's ecosystem but also plays a crucial role in regulating Asian and global climates.In order to explore the change characteristics and influencing factors of evapotranspiration in different regions of alpine grassland ecosystem on the Qinghai-Xizang Plateau, and deepen understanding of plateau climate change and hydrological-ecological processes, based on the observed eddy and meteorological data in 2022, the variation characteristics and environmental influencing factors of actual evapotranspiration of alpine grassland ecosystems at the same altitude in Sijinlacuo (seasonal permafrost) and Tuotuo River (permafrost) on the Qinghai-Xizang Plateau were compared and analyzed.The results show that: (1) Significant differences existed between environmental factors at these two sites, particularly in wind speed, air temperature, and precipitation.The wind speed at Tuotuo River station greatly exceeded that at Shijinlasuo station; annual average air temperature and precipitation were lower at Tuotuo River station.(2) The average hourly evapotranspiration of Sijinlacuo Station at night was higher than those recorded at Tuotuo River Station, however, this trend reverses during daytime hours.The variation characteristics of daily evapotranspiration at the two stations had a similar trend.The date of sharp increase and maximum of evapotranspiration at Sijinlacuo Station were earlier than those at Tuotuo River Station.The monthly evapotranspiration of the two stations were unimodal, with the maximum value appeared in July in summer and the smaller value appeared in December, January and February in winter.(3) Wind speed and ground radiation showed differing correlations with evaporation across both stations.Wind speed had a stronger correlation with evaporation at Tuotuo River Station due to higher wind speeds compared to weaker correlations observed for Sijinlasuo Station where winds were less intense.Conversely, ground radiation showed opposite correlations with evaporation between both locations.Air temperature, water vapor pressure, and atmospheric longwave radiation demonstrated strong correlations with evaporation across both locations while air humidity, saturated water vapor pressure difference, and precipitation displayed weaker associations.Precipitation exhibited the weakest correlation.(4) Although precipitation served as the primary source of evaporated water content, sources such as glacier melt water and thawing permafrost played significant roles as well on the Qinghai-Xizang Plateau, resulting in subdued influence of precipitation on the evaporative process at both locations.These results contribute valuable insights into understanding regional variations in high-altitude grassland ecosystems' response to changing climatic conditions on the Qinghai-Xizang Plateau.

参考文献

null
Cook B I Mankin J S Marvel K, et al, 2020.Twenty-first century drought projections in the CMIP6 forcing scenarios[J].Earth's Future8(6): e2019EF001461.DOI: 10.1029/2019EF001461 .
null
Donohue R J McVicar T R Roderick M L2010.Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate[J].Journal of Hydrology386(1): 186-197.DOI: 10.1016/j.jhydrol.2010. 03.020 .
null
Gu L L Yao J M Hu Z Y, et al, 2015.Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau[J].Atmospheric Research, 153: 553-564.DOI: 10.1016/j.atmosres.2014.10.012 .
null
Maidment D R1993.Handbook of hydrology[M].New York: McGraw-Hill.
null
Rosenberg N J Blad B L Verma S B1983.Microclimate: the biological environment[M].2nd ed.New York: John Wiley&Sons.
null
Yao T D Masson-Delmotte V Gao J, et al, 2013.A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations[J].Reviews of Geophysics51(4): 525-548.DOI: 10.1002/rog.20023 .
null
Yao T D Xue Y K Chen D L, et al, 2019.Recent Third Pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling and analysis[J].Bulletin of the American Meteorological Society100(3): 423-444.DOI: 10.1175/BAMS-D-17-0057.1 .
null
常娜, 李茂善, 王灵芝, 等, 2022.峨眉山地区近地层微气象特征研究[J].高原气象41(1): 226-240.DOI: 10.7522/j.issn.1000-0534.2021.00111.Chang N
null
Li M S Wang L Z, et al, 2022.Study on micrometeorological characteristics of near surface layer in Emeishan Area[J].Plateau Meteorology41(1): 226-240.DOI: 10.7522/j.issn.1000-0534.2021.00111 .
null
陈贝, 张文贤, 2017.藏东南地区季节性冻土研究[J].海峡科技与产业, 11: 56-57+63.
null
Chen B Zhang W X2017.Research on seasonal frozen soil in Southeast Tibet[J].Technology and Industry Across the Straits, 11: 56-57+63.
null
郭小娇, 石建省, 2019.水分蒸散发研究国内外进展与趋势[J].地质评论65(6): 1473-1486.DOI: 10.16509/j.georeview.2019.06.014.Guo X J
null
Shi J S2019.Global review of the research progress and trend of evapotranspiration[J].Geological Review65(6): 1473-1486.DOI: 10.16509/j.georeview.2019.06.014 .
null
花圣卓, 蔡昕, 余新晓, 2016.平坦下垫面植被蒸散特征及对气象因素的响应研究[J].水土保持学报30(3): 344-354.DOI: 10.13870/j.cnki.stbcxb.2016.03.058.Hua S Z
null
Cai X Yu X X2016.Study on the evapotranspiration features of vegetation over flat underlying surface and response to meteorological factors[J].Journal of Soil and Water Conservation30(3): 344-354.DOI: 10.13870/j.cnki.stbcxb.2016.03.058 .
null
黄会平, 曹明明, 宋进喜, 等, 2015.1957-2012年中国参考作物蒸散量时空变化及其影响因子分析[J].自然资源学报30(2): 315-326.DOI: 10.11849/zrzyxb.2015.02.014.Huang H P
null
Cao M M Song J X, et al, 2015.Temporal and spatial changes of potential evapotranspiration and its influencing factors in China from 1957 to 2012[J].Journal of Natural Resources30(2): 315-326.DOI: 10.11849/zrzyxb.2015.02.014 .
null
李婧梅, 蔡海, 程茜, 等, 2012.青海省三江源地区退化草地蒸散特征[J].草业学报3(21): 223-233.DOI: 1004-5759(2012)03-0223-11.Li J M
null
Cai H Cheng Q, et al, 2012.Characterizing the evapotranspiration of a degraded grassland in the Sanjiangyuan Region of Qinghai province[J].Acta Prataculturae Sinica3(21): 223-233.DOI: 1004-5759(2012)03-0223-11 .
null
李文静, 罗斯琼, 郝晓华, 等, 2021.青藏高原东部不同季节积雪过程对地表能量和土壤水热影响的观测研究[J].高原气象40(3): 455-471.DOI: 10.7522/j.issn.1000-0534.2020.00001.Li W J
null
Luo S Q Hao X H, et al, 2021.Observations of East Qinghai-Xizang Plateau snow cover effects on surface energy and water exchange in different seasons[J].Plateau Meteorology40(3): 455-471.DOI: 10.7522/j.issn.1000-0534.2020.00001 .
null
梁顺林, 白瑞, 陈晓娜, 等, 2020.2019年中国陆表定量遥感发展综述[J].遥感学报24(6): 618-671.DOI: 10.11834/jrs.20209476.Liang S L
null
Bai R Chen X N, et al, 2020.Review of China's land surface quantitative remote sensing development in 2019[J].National Remote Sensing Bulletin24(6): 618-671.DOI: 10.11834/jrs.20209476 .
null
邱中齐, 周琳琳, 刘红娟, 等, 2022.玉米农田生态系统蒸散发模型参数优化[J].灌溉排水学报41(1): 33-40.DOI: 10.13522/j.cnki.ggps.2021294.Qiu Z Q
null
Zhou L L Liu H J, et al, 2022.Optimizing parameter estimation to improve evapotranspiration calculation for maizefields[J].Journal of Irrigation and Drainage41(1): 33-40.DOI: 10.13522/j.cnki.ggps.2021294 .
null
尚程鹏, 吴通华, 姚济敏, 等, 2022.不同互补模型对青藏高原多年冻土区地表实际蒸散发的模拟能力评估[J].高原气象41(3): 541-557.DOI: 10.7522/j.issn.1000-0534.2021.00054.Shang C P
null
Wu T H Yao J M, et al, 2022.Evaluation of complementary relationship model on land surface actual evapotranspiration in the permafrost region of Qinghai-Xizang Plateau[J].Plateau Meteorology41(3): 541-557.DOI: 10.7522/j.issn.1000-0534.2021.00054 .
null
宋璐璐, 尹云鹤, 吴绍洪, 2012.蒸散发测定方法研究进展[J].地理科学进展31(9): 1186-1195.DOI: 10.11820/dlkxjz.2012.09.010.Song L L
null
Yin Y H Wu S H2012.Advancements of metrics of evapotranspiration[J].Progress in Geography31(9): 1186-1195.DOI: 10.11820/dlkxjz.2012.09.010 .
null
孙树娇, 周秉荣, 周华坤, 等, 2021.青藏高原典型高寒荒漠生长季蒸散及水分消耗特征研究[J].草地学报29(S1): 137-145.DOI: 10.11733/j.issn.1007-0435.2021.Z1.016.Sun S J
null
Zhou B R Zhou H K, et al, 2021.Characteristics of evapotranspiration and water consumption of typical alpine desert in the Tibetan Plateau during the growing season[J].Acta Agrestia Sinica29(S1): 137-145.DOI: 10.11733/j.issn.1007-0435.2021.Z1.016 .
null
田露, 郭伟, 倪向南, 等, 2023.青海湖地区潜在蒸散发变化特征及影响因子分析[J].地球环境学报14(3): 328-338.DOI: 10.7515/JEE222058.Tian L
null
Guo W Ni X N, et al, 2023.Analysis of potential evapotranspiration trends and its factors in Qinghai Lake area[J].Journal of Earth Environment14(3): 328-338.DOI: 10.7515/JEE222058 .
null
王利辉, 何晓波, 丁永建, 2019.青藏高原中部高寒草甸蒸散发特征及其影响因素[J].冰川冻土41(4): 801-808.DOI: 10.7522/j.issn.1000-0240.2017.0329.Wang L H
null
He X B Ding Y J2019.Characteristics and influence factors of the evapotranspiration from alpine meadow in central Qinghai-Tibet Plateau[J].Journal of Glaciology and Geocryology41(4): 801-808.DOI: 10.7522/j.issn.1000-0240.2017.0329 .
null
王树舟, 马耀明, 吴文玉, 2023.基于Noah-MP陆面模式的青藏高原地表感热和潜热通量分布及变化特征[J].高原气象42(1): 25-34.DOI: 10.7522/j.issn.1000-0534.2022.00036.Wang S Z
null
Ma Y M Wu W Y2023.Characteristics of distributions and changes of surface sensible and latent heat fluxes on the Qinghai-Xizang Plateau based on the Noah-MP land surface model[J].Plateau Meteorology42(1): 25-34.DOI: 10.7522/j.issn.1000-0534.2022.00036 .
null
王秀英, 周秉荣, 陈奇, 等, 2022.青藏高原典型高寒草甸和高寒沼泽湿地植被耗水规律研究[J].高原气象41(2): 338-348.DOI: 10.7522/j.issn.1000-0534.2021.00079.Wang X Y
null
Zhou B R Chen Q, et al, 2022.Study on Water consumption law of typical alpine meadow and alpine swamp wetland vegetation in Qinghai-Xizang Plateau[J].Plateau Meteorology41(2): 338-348.DOI: 10.7522/j.issn.1000-0534.2021.00079 .
null
王云英, 裴薇薇, 王新, 等, 2023.青藏高原不同植被类型草地蒸散量长期变化与适应性模型研究[J].干旱区资源与环境37(3): 85-90.DOI: 10.13448/j.cnki.jalre.2023.065.Wang Y Y
null
Pei W W Wang X, et al, 2023.Long-term changes in evapotranspiration and adaptation models for different vegetation types of grasslands on the Qinghai-Tibet Plateau[J].Journal of Arid Land Resources and Environment37(3): 85-90.DOI: 10.13448/j.cnki.jalre.2023.065 .
null
王梓月, 罗斯琼, 李文静, 等, 2022.青藏高原东部多、 少雪年地表能量和水分特征对比研究[J].高原气象41(2): 444-464.DOI: 10.7522/j.issn.1000-0534.2022.00017.Wang Z Y
null
Luo S Q Li W J, et al, 2022.Comparative analysis of surface energy and water characteristics in high snowfall years and low snowfall years on the Qinghai-Xizang Plateau[J].Plateau Meteorology41(2): 444-464.DOI: 10.7522/j.issn.1000-0534.2022.00017 .
null
温馨, 周纪, 刘绍民, 等, 2021.基于多源产品的西南河流源区地表蒸散发时空特征[J].水资源保护37(3): 32-42.DOI: 10.3880/j.issn.1004-6933.2021.03.006.Wen X
null
Zhou J Liu S M, et al, 2021.Spatiotemporal characteristics of surface evapotranspiration in source region of rivers in Southwest China based on multi-source products[J].Water Resources Protection37(3): 32-42.DOI: 10.3880/j.issn.1004-6933.2021.03.006 .
null
吴小丽, 刘桂民, 李新星, 等, 2021.青藏高原多年冻土和季节性冻土区土壤水分变化及其与降水的关系[J].水文41(1): 73-78+101.DOI: 10.19797/j.cnki.1000-0852.20190430.Wu X L
null
Liu G M Li X X, et al, 2021.Variation of soil moisture and its relation with precipitation of permafrost and seasonally frozen soil regions on the Qinghai-Tibet Plateau[J].Journal of China Hydrology41(1): 73-78+101.DOI: 10.19797/j.cnki.1000-0852.20190430 .
null
谢虹, 鄂崇毅, 2014.青藏高原参考蒸散发时空变化特征及影响因素[J].青海师范大学学报(自然科学版), 4: 52-59.DOI: 10.16229/j.cnki.issn1001-7542.2014.04.009.Xie H , E C Y, 2014.The spatiotemporal characteristics of evapotranspiration and its related affecting meteorological variables on the Tibetan Plateau[J].Journal of Qinghai Normal University(Natural Science), 4: 52-59.DOI: 10.16229/j.cnki.issn1001-7542.2014. 04.009 .
null
徐自为, 刘绍民, 徐同仁, 等, 2009.涡动相关仪观测蒸散量的插补方法比较[J].地球科学进展24(4): 372-382.DOI: 10.3321/j.issn: 1001-8166.2009.04.003.Xu Z W
null
Liu S M Xu T R, et al, 2009.Comparison of the gap filling methods of evapotranspiration measured by eddy covariance system[J].Advances in Earth Science24(4): 372-382.DOI: 10.3321/j.issn: 1001-8166.2009.04.003 .
null
姚檀栋, 陈发虎, 崔鹏, 等, 2017.从青藏高原到第三极和泛第三极[J].中国科学院院刊32(9): 924-931.DOI: 10.16418/j.issn.1000-3045.2017.09.001.Yao T D
null
Chen F H Cui P, et al, 2017.From Tibetan Plateau to Third Pole and Pan-Third Pole[J].Bulletin of Chinese Academy of Sciences32(9): 924-931.DOI: 10.16418/j.issn.1000-3045.2017.09.001 .
null
姚天次, 卢宏玮, 于庆, 等, 2020.近50 年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J].地球科学进展5(35): 534-546.DOI: 10.11867/j.issn.1001-8166.2020.031.Yao T C
null
Lu H W Yu Q, et al, 2020.Potential evapotranspiration characteristic and its abrupt change across the Qinghai-Tibetan Plateau and its surrounding areas in the last 50 years[J].Advances in Earth Science5(35): 534-546.DOI: 10.11867/j.issn.1001-8166.2020.031 .
null
张戈, 赖欣, 刘康, 2023.黄河源区玛曲土壤冻融过程中地表水热交换特征分析[J].高原气象42(3): 575-589.DOI: 10.7522/j.issn.1000-0534.2022.00083.Zhang G
null
Lai X Liu K2023.Characteristics of surface water and heat exchange during soil freezing and thawing of Maqu station in the source area of the Yellow River[J].Plateau Meteorology42(3): 575-589.DOI: 10.7522/j.issn.1000-0534.2022.00083 .
null
张文旭, 王根绪, 胡兆永, 2022.三种蒸散发测算方法的比较——以青藏高原风火山地区为例[J].冰川冻土44(2): 1-10.DOI: 10.7522/j.issn.1000-0240.2023.0009.Zhang W X
null
Wang G X Hu Z Y2022.Comparison of three evapotranspiration calculation methods: a case study of Fenghuoshan area in Qinghai-Tibet Plateau[J].Journal of Glaciology and Geocryology44(2): 1-10.DOI: 10.7522/j.issn.1000-0240.2023.0009 .
null
张亚春, 马耀明, 马伟强, 等, 2021.青藏高原不同下垫面蒸散量及其与气象因子的相关性[J].干旱气象39(3): 366-373.DOI: 10.11755/j.issn.1006-7639(2021)-03-0366.Zhang Y C
null
Ma Y M Ma W Q, et al, 2021.Evapotranspiration variation and its correlation with meteorological factors on different underlying surfaces of the Tibetan Plateau[J].Journal of Arid Meteorology39(3): 366-373.DOI: 10.11755/j.issn.1006-7639(2021)-03-0366 .
null
赵冰茜, 2023.基于土壤水分动态变化对高寒山区降雨及蒸散发的估算[D].兰州: 兰州大学.Zhao B Q, 2023.Rainfall and evapotranspiration estimation from soil moisture dynamics in cold mountainous areas[D].Lanzhou: Lanzhou University.
null
朱立平, 鞠建廷, 乔宝晋, 等, 2019.“亚洲水塔”的近期湖泊变化及气候响应: 进展、 问题与展望 [J].科学通报64(27): 2796-2806.DOI: 10.1360/TB-2019-0185.Zhu L P
null
Ju J T Qiao B J, et al, 2019.Recent lake changes of the Asia Water Tower and their climate response: progress, problems and prospects[J].Chinese Science Bulletin (Chinese Version)64(27): 2796-2806.DOI: 10.1360/TB-2019-0185 .
文章导航

/