一种偏差校正方法在青藏高原夏季CMIP6降水数据订正中的应用评估

  • 刘雨萌 ,
  • 赵林 ,
  • 李照国 ,
  • 王少影 ,
  • 马媛媛 ,
  • 孟宪红
展开
  • 1. 中国科学院西北生态环境资源研究院/冰冻圈科学与冻土工程重点实验室,甘肃 兰州 730000
    2. 中国科学院大学,北京 100049

刘雨萌(1996 -), 女, 云南昆明人, 博士研究生, 主要从事陆面过程与气候变化研究. E-mail:

收稿日期: 2023-08-16

  修回日期: 2024-03-27

  网络出版日期: 2024-09-19

基金资助

国家自然科学基金项目(42275045); 中国科学院“西部之光-西部交叉团队”项目(xbzg-zdsys-202215); 甘肃省重点基金项目(xbzg-zdsys-202215); 国家留学基金项目(202304910471)

Application Evaluation of a Bias Correction Method in the Correction of CMIP6 Precipitation Data for Summer in Qinghai-Xizang Plateau

  • Yumeng LIU ,
  • Lin ZHAO ,
  • Zhaoguo LI ,
  • Shaoying WANG ,
  • Yuanyuan MA ,
  • Xianhong MENG
Expand
  • 1. Key Laboratory of Cryospheric Science and Frozen Soil Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2023-08-16

  Revised date: 2024-03-27

  Online published: 2024-09-19

摘要

利用第六次国际耦合模式比较计划(CMIP6)中的18个模式, 基于欧洲中期天气预报中心第五代再分析资料(ERA5)再分析数据对青藏高原夏季降水数据进行了偏差校正, 并从平均降水和极端降水两方面评估了校正前后的CMIP6数据以及单个模式在1979 -2014年的表现。研究结果表明, 该校正方法高度依赖于用于偏差校正的ERA5再分析数据在研究区域的质量, 尽管偏差校正后的青藏高原夏季平均降水的误差和误差率上有所改善, 但在年际时间变化特征方面却不如偏差校正前的数据。大多数CMIP6模式能够较好地模拟1979 -2014年青藏高原上由西北至东南逐渐递增的平均降水空间变化特征。偏差校正前的降水数据在高原上会出现显著的高估, 误差率为60.4%, 经过偏差校正后的数据相对观测数据误差降低, 误差率为-13.9%, 并且偏差校正后的数据与ERA5的平均误差仅为0.003 mm·d-1, 与ERA5的空间相关性高达0.999。空间趋势方面, 观测数据表明青藏高原大部分地区夏季降水在1979 -2014年呈现轻微增加的趋势, 只有东缘出现明显降低的趋势。偏差校正前后的数据都能够大致刻画出这一空间分布特征, 然而, 未经偏差校正的大多数单个CMIP6模式与ERA5的空间相关系数未超过0.5。与由独立观测降水数据的年际变化特征相比, 偏差校正前的数据高估了高原上的降水量, 而偏差校正后的数据相比观测结果则偏低。通过确定95%分位阈值选取了极端降水个例, 其集合平均极端降水空间分布与年平均降水类似, 也呈西北向东南递增的趋势。部分CMIP6模式较好地模拟了这一特征, 如MRI-ESM2-0(The Meteorological Research Institute Earth System Model version 2.0)和ACCESS-CM2(Australian Community Climate and Earth System Simulator Climate Model Version 2), 与观测结果的空间相关系数分别为0.851和0.821。但偏差校正后的数据在空间相关性方面下降, 由偏差校正前的0.861降为0.730, 未能准确刻画高原极端降水阶梯式递增的特点。偏差校正后的极端降水数据误差分布与偏差校正前相似, 偏低区域主要集中在高原南部腹地和东部。进一步的极端降水贡献率分析结果表明, 观测结果与CMIP6降水数据均显示1979 -2014年期间极端降水贡献率变化趋势不明显。单个CMIP6模式中, EC-Earth3-Veg(European Community Earth-Vegetation model version 3)和EC-Earth3(European Community Earth Model version 3)及CanESM5(The Canadian Earth System Model version 5)在多个统计评估指标上排名靠前, 展示出较好的模拟能力; IPSL-CM6A-LR(Institut Pierre-Simon Laplace Climate Model 6A Low Resolution)在平均降水误差和极端降水的误差指标上表现出色。

本文引用格式

刘雨萌 , 赵林 , 李照国 , 王少影 , 马媛媛 , 孟宪红 . 一种偏差校正方法在青藏高原夏季CMIP6降水数据订正中的应用评估[J]. 高原气象, 2025 , 44(1) : 16 -31 . DOI: 10.7522/j.issn.1000-0534.2024.00046

Abstract

We bias-corrected and assessed summer precipitation data over the Qinghai-Xizang Plateau (QXP) based on 18 models from the Coupled Model Intercomparison Project Phase 6 (CMIP6).Our assessment of CMIP6 data, conducted for the period 1979-2014, centered on the performance of both the ensemble and individual models.We evaluated the CMIP6 data before and after bias correction, according to considering mean precipitation and extreme precipitation.The results highlight the correction method's dependence on ERA5 reanalysis data quality over the QXP.Although corrected mean summer precipitation over the QXP shows improvement in bias and bias rate, it exhibits inferior interannual time-varying characteristics compared to pre-corrected data.Most of the models were able to better simulate the spatial variability characteristics of mean precipitation over the QXP, gradually increasing from northwest to southeast from 1979 to 2014.Pre-correction precipitation data overestimates precipitation over the QXP with a bias rate of 60.4%, while corrected data is relatively underestimated with a deviation rate of -13.9%.The mean bias of the corrected data from ERA5 is only 0.003 mm·d-1, with a spatial correlation as high as 0.999.Spatial trend analysis of observed data indicates a slight increase in summer precipitation over most of the TP from 1979 to 2014, with a significant decreasing trend only along the eastern edge.Both pre- and post-corrected data generally capture this spatial distribution, though pattern correlation coefficients of most individual uncorrected CMIP6 models do not exceed 0.5.Comparing with the interannual variability of the precipitation data obtained from observations, the pre-corrected data overestimate the precipitation on the QXP, while the post-corrected data are underestimated in comparison with the observation results.Extreme precipitation is selected by determining the 95% thresholds, a revealing a spatial distribution similar to the mean annual precipitation, increasing from northwest to southeast.This feature is well captured by some models, such as MRI-ESM2-0 (The Meteorological Research Institute Earth System Model version 2.0) and ACCESS-CM2 (Australian Community Climate and Earth System Simulator Climate Model Version 2.0).Earth System Simulator Climate Model Version 2), the spatial correlation coefficients are 0.851 and 0.821, respectively, compared with the observations, but the spatial correlation of the corrected data decreases from 0.861 to 0.730, failing to accurately characterize the stepwise increase of extreme precipitation on the QXP.The deviation distribution of the corrected extreme precipitation data is similar to pre-correction data, with lower areas concentrated in the southern hinterland and eastern part of the QXP.The analysis of extreme precipitation contribution shows that both the observation results and the CMIP6 precipitation data indicate that the trend of extreme precipitation contribution is not obvious during 1979-2014.Among individual models, EC-Earth3-Veg (European Community Earth-Vegetation model version 3) and EC-Earth3 (European Community Earth Model version 3) and CanESM5 (The Canadian Earth System Model version 5) ranked high in several parameters, showing better simulation capability, while IPSL-CM6A-LR (Institute Pierre-Simon Laplace Climate Model 6A Low Resolution) ranked high in the mean precipitation deviation and extreme precipitation deviation.

参考文献

null
Balaji V Taylor K E Juckes M, et al, 2018.Requirements for a global data infrastructure in support of CMIP6[J].Geoscientific Model Development, 11: 3659-3680.DOI: 10.5194/gmd-11-3659-2018 .
null
Eyring V Bony S Meehl G A, et al, 2016.Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J].Geoscientific Model Development, 9: 1937-1958.DOI: 10.5194/gmd-9-1937-2016 .
null
Fu Y H Lin Z D Guo D2020.Improvement of the simulation of the summer East Asian westerly jet from CMIP5 to CMIP6[J].Atmospheric and Oceanic Science Letters, 13: 550-558.DOI: 10.1080/16742834.2020.1746175 .
null
Hersbach H Bell B Berrisford P, et al, 2020.The ERA5 global reanalysis.Quarterly Journal of the Royal Meteorological Society[J].Quarterly Journal of the Royal Meteorological Society146(730): 1999-2049.DOI: 10.1002/qj.3803 .
null
Ma D Y Li X D Lin B R, et al, 2023.A dynamic intelligent building retrofit decision-making model in response to climate change [J].Energy and Buildings, 284: 112832.DOI: 10.1016/j.enbuild.2023.112832 .
null
Mullan D Chen J Zhang X J2016.Validation of non-stationary precipitation series for site-specific impact assessment: comparison of two statistical downscaling techniques[J].Climate Dynamics, 46: 967-986.DOI: 10.1007/s00382-015-2626-x .
null
Schmidli J Frei C Vidale P L2006.Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods[J].International Journal of Climatology, 26: 679-689.DOI: 10.1002/joc.1287 .
null
Wilby R L Wigley T M L Conway D, et al, 1998.Statistical downscaling of general circulation model output: A comparison of methods[J].Water Resources Research34(1): 2995-3008.DOI: 10.1029/98WR02577 .
null
Wu J Gao X J Giorgi F, et al, 2017.Changes of effective temperature and cold/hot days in late decades over China based on a high resolution gridded observation dataset[J].International Journal of Climatology37(S1): 788-800.DOI: 10.1002/joc.5038 .
null
Xu Y Gao X J Shen Y, et al, 2009.A daily temperature dataset over China and its application in validating a RCM simulation[J].Advances in Atmospheric Sciences26(4): 763-772.DOI: 10. 1007/s00376-009-9029-z .
null
Xu Z F Han Y Tam C Y, et al, 2021.Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979-2100)[J].Scientific Data, 8: 293.DOI: 10.1038/s41597-021-01079-3 .
null
Xu Z F Han Y Zhang M Z, et al, 2024.Assessing the performance of a dynamical downscaling simulation driven by a bias-corrected CMIP6 dataset for Asian Climate[J].Advances in Atmospheric Sciences15(1).DOI: 10.1007/s00376-023-3101-y .
null
鲍艳, 王玉琦, 南素兰, 等, 2023.青藏高原植被对未来气候变暖的反馈[J].高原气象42(3): 553-563.DOI: 10.7522/j.issn.1000-0534.2021.00109.Bao Y
null
Wang Y Q Nan S L, et al, 2023.Response of vegetation over the Qinghai-Xizang Plateau to Projected Warming Climate[J].Plateau Meteorology42(3): 553-563 DOI: 10.7522/j.issn.1000-0534.2021.00109 .
null
陈杰, 许崇育, 郭生练, 等, 2016.统计降尺度方法的研究进展与挑战[J].水资源研究5(4): 299-313.DOI: 10.12677/JWRR.2016.54037.Chen J
null
Xu C Y Guo S D, et al, 2016.Progress and challenge in statistically downscaling climate model outputs [J].Journal of Water Resources Research5(4): 299-313.DOI: 10.12677/JWRR.2016.54037 .
null
陈荣, 段克勤, 尚溦, 等, 2023.基于CMIP6模式数据的1961 -2099年青藏高原降水变化特征分析[J].高原气象42(2): 294-304 DOI: 10.7522/j.issn.1000-0534.2021.00084.Chen R
null
Duan K Q Shang W, et al, 2023.Characteristics of precipitation change over the Qinghai-Xizang Plateau from 1961 to 2099 based on CMIP6 Models[J].Plateau Meteorology42(2): 294-304 DOI: 10.7522/j.issn.1000-0534.2021.00084 .
null
段凯, 梅亚东, 2021.几种降水降尺度方法在中国十大流域的适用性分析[J].武汉大学学报(工学版)54(9): 777-783.DOI: 10.14188/j.1671-8844.2021-09-001.Duan K
null
Mei Y D2021.Applicability of precipitation downscaling methods in top ten basins of China[J].Engineering Journal of Wuhan University54(9): 777-783.DOI: 10.14188/j.1671-8844.2021-09-001 .
null
范丽军, 符淙斌, 陈德亮, 2005.统计降尺度法对未来区域气候变化情景预估的研究进展[J].地球科学进展20(3): 320-329.DOI: 10.11867/j.issn.1001-8166.2005.03.0320.Fan L J
null
Fu C B Chen D L2005.Review on creating future climate change scenarios by statistical downscaling techniques[J].Advance in Earth Sciences20 (3): 320-329.DOI: 10.11867/j.issn.1001-8166.2005.03.0320 .
null
匡志远, 宋振亚, 董昌明, 2020.基于机器学习订正模型的未来百年全球海表温度预估研究[J].气候变化研究快报9(4): 270-284.DOI: 10.12677/CCRL.2020.94031.Kuang Z Y
null
Song Z Y Dong C M2020.Study on the future projection of global sea surface temperature over 21st century using a biases correction model based on machine learning[J].Climate Change Research Letters9(4): 270-284.DOI: 10.12677/CCRL.2020.94031 .
null
李宛鸿, 徐影, 2023.CMIP6模式对青藏高原极端气温指数模拟能力评估及预估[J].高原气象42(2): 305-319.DOI: 10.7522/j.issn.1000-0534.2022.00032.Li W H
null
Xu Y2023.Evaluation and projection of extreme temperature indices over the Qinghai-Xizang Plateau by CMIP6 Models[J].Plateau Meteorology42(2): 305-319.DOI: 10.7522/j.issn.1000-0534.2022.00032 .
null
潘保田, 李吉均, 1996.青藏高原: 全球气候变化的驱动机与放大器——Ⅲ.青藏高原隆起对气候变化的影响[J].兰州大学学报, 32(1): 108-115.
null
Pan B T Li J J1996.Qinghai-Tibetan Plateau: a driver and amplifier of the global climatic change——Ⅲ.The effects of the uplift of Qinghai-Tibetan Plateau on Climatic Changes[J].Journal of Lanzhou University32(1): 108-115.
null
强安丰, 汪妮, 莫淑红, 等, 2020.气候变化对水文水资源影响评价的不确定研究进展[J].水资源研究9(2): 169-178.DOI: 10.12677/JWRR.2020.92018. Qiang A F
null
Wang N Mo S H, et al, 2020.Review for impact assessment of climate change on hydrology and water resources in uncertainties research[J].Journal of Water Resources Research9(2): 169-178.DOI: 10.12677/JWRR.2020.92018 .
null
王予, 李惠心, 王会军, 等, 2021.CMIP6全球气候模式对中国极端降水模拟能力的评估及其与CMIP5的比较[J].气象学报79(3): 369-386.DOI: 10.11676/qxxb2021.031.Wang Y
null
Li H X Wang H J, et al, 2021. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5[J].Acta Meteorologica Sinica79(3): 369-386.DOI: 10.11676/qxxb2021.031 .
null
吴佳, 高学杰, 2013.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报56(4): 1102-1111.DOI: 10.6038/cjg20130406.Wu J
null
Gao X J2013.A gridded daily observation dataset over China region and comparison with the other datasets[J].Chinese Journal of Geophysics56(4): 1102-1111.DOI: 10.6038/cjg20130406 .
null
肖雨佳, 李建, 李妮娜, 2022.CMIP6 HighResMIP高分辨率气候模式对青藏高原降水模拟的评估[J].暴雨灾害41(2): 215-223.DOI: 10.3969/j.issn.1004-9045.2022.02.012.Xiao Y J
null
Li J Li N N2022.Evaluation of CMIP6 HighResMIP models in simulating precipitation over Tibetan Plateau[J].Torrential Rain and Disasters41(2): 215-223.DOI: 10.3969/j.issn.1004-9045.2022.02.012 .
null
徐仁慧, 赵磊, 文小航, 2022.基于 CMIP6 动力降尺度对青藏高原降水的评估[J].气候变化研究快报11(6): 1076-1087.DOI: 10.12677/CCRL.2022.116112. Xu R H
null
Zhao L Wen X H2022.Evaluation of precipitation over the Tibetan Plateau based on CMIP6 dynamic downscaling[J].Climate Change Research Letters11(6): 1076-1087.DOI: 10.12677/CCRL.2022.116112 .
null
徐祥德, 董李丽, 赵阳, 等, 2019.青藏高原“亚洲水塔”效应和大气水分循环特征[J].科学通报64(27): 2830-2841.
null
Xu X D Dong L N Zhao Y, et al, 2019. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation[J].Chinese Science Bulletin64(27): 2830-2841.
null
杨明鑫, 肖天贵, 李勇, 等, 2022.CMIP6 模式对我国西南地区夏季气候变化的模拟和预估[J].高原气象41(6): 1557-1571.DOI: 10.7522/j.issn.1000-0534.2021.00119.Yang M X
null
Xiao T G Li Y, et al, 2022.Evaluation and projection of climate change in Southwest China using CMIP6 models[J].Plateau Meteorology41(6): 1557-1571.DOI: 10.7522/j.issn.1000-0534.2021.00119 .
null
张春雨, 刘爱利, 吕嫣冉, 等, 2023.基于CMIP6 青藏高原腹地气候模拟评估及时空分析[J].高原气象42(5): 1144-1159.DOI: 10.7522/j.issn.1000-0534.2022.00104.Zhang C Y
null
Liu A L Y R, et al, 2023. Spatial-temporal analysis and assessment of CMIP6 based climate simulation over the Qinghai-Xizang(Tibet)Plateau’s Hinterland[J].Plateau Meteorology42(5): 1144-1159.DOI: 10.7522/j.issn.1000-0534.2022.00104 .
null
张佳怡, 伦玉蕊, 刘浏, 等, 2022.CMIP6多模式在青藏高原的适应性评估及未来气候变化预估[J].北京师范大学学报(自然科学版)58(1): 77-89.DOI: 10.12202/j.0476-0301.2021114.Zhang J Y
null
Lun Y R Liu L, et al, 2022. CMIP6 evaluation and projection of climate change in Tibetan Plateau[J].Journal of Beijing Normal University (Natural Science)58(1): 77-89.DOI: 10.12202/j.0476-0301.2021114 .
null
张雪芹, 彭莉莉, 林朝晖, 2008.未来不同排放情景下气候变化预估研究进展[J].地球科学进展23(2): 174-185.DOI: 10.11867/j.issn.1001-8166.2008.02.0174.Zhang X Q
null
Peng L L Lin C H2008. Progress on the projections of future climate change with various emission scenarios[J].Advance in Earth Sciences23(2): 174-185.DOI: 10.11867/j.issn.1001-8166.2008.02.0174 .
null
赵丹, 张丽霞, 周天军, 2022.CMIP6模式对中国东部地区水循环的模拟能力评估[J].大气科学46(3): 557-572.DOI: 10.3878/j.issn.1006-9895.2106.21030.Zhao D
null
Zhang L X Zhou T J2022.Performance assessment of CMIP6 model in simulating the water cycle over East China[J].Chinese Journal of Atmospheric Sciences46(3): 557-572.DOI: 10.3878/j.issn.1006-9895.2106.21030 .
null
周天军, 邹立维, 陈晓龙, 2019.第六次国际耦合模式比较计划(CMIP6)评述[J].气候变化研究进展15(5): 445-456.DOI: 10.12006/j.issn.1673-1719.2019.193.Zhou T J
null
Zhou L W Chen X L2019. Evaluation of Arctic sea ice extent according to Chinese CMIP6 models[J].Chinese Journal of Polar Research15(5): 445-456.DOI: 10.12006/j.issn.1673-1719.2019.193 .
文章导航

/