定量评估东亚地区植被对大气变率的反馈

  • 马迪 ,
  • 吕世华 ,
  • 孟宪红 ,
  • 赵林 ,
  • 李照国 ,
  • 马媛媛 ,
  • 李美霞
展开
  • 1. 中国科学院西北生态环境资源研究院 冰冻圈科学与冻土工程重点实验室,甘肃 兰州 730000
    2. 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室,四川 成都 610225
    3. 内蒙古乌兰察布市集宁区园林环卫服务中心,内蒙古 乌兰察布 012000

马迪(1984 -), 男, 甘肃省景泰县人, 副研究员, 主要从事大气边界层和陆面过程研究. E-mail:

收稿日期: 2023-10-19

  修回日期: 2024-02-04

  网络出版日期: 2024-09-19

基金资助

国家自然科学基金项目(42275097); 中国科学院西部之光基金; 甘肃省科技计划项目(24JRRA080)

Quantitative Assessment of Vegetation Feedback to Atmospheric Variability over East Asia

  • Di MA ,
  • Shihua Lü ,
  • Xianhong MENG ,
  • Lin ZHAO ,
  • Zhaoguo LI ,
  • Yuanyuan MA ,
  • Meixia LI
Expand
  • 1. Key Laboratory of Cryospheric Science and Frozen Soil Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. College of Atmospheric Sciences,Chengdu University of Information Technology Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,Chengdu 610225,Sichuan,China
    3. Jining district garden sanitation service center,Inner Mongolia Ulanqab,Ulanqab 012000,Inner Mongolia,China

Received date: 2023-10-19

  Revised date: 2024-02-04

  Online published: 2024-09-19

摘要

利用统计方法分析了东亚地区植被与大气变率之间的相互关系, 并利用平衡反馈分析法(EFA)定量评估了植被对大气的反馈程度。研究发现植被与温度和降水均有明显的相关性, 在中高纬度地区植被与温度呈明显的同期正相关, 植被与降水存在负相关关系。而在中低纬地区植被与降水呈同期正相关, 植被与气温呈负相关关系。前期中高纬度植被增加后, 会导致后期异常升温。这是由于前期植被覆盖度增加后会遮挡地表积雪, 导致地表积雪覆盖度减少, 反射率减少, 地表吸收更多的太阳辐射, 导致异常升温。超前的降水对植被的影响在中低纬度十分明显, 这是由于中低纬度地区年平均温度较高, 降水是制约植被生长的主要因素。当植被超前降水一个月时, 中低纬度地区植被与降水呈正相关, 其原因是植被增加会导致局地水汽辐合, 蒸发/蒸腾增加, 导致降水增加。植被对温度的反馈系数在大兴安岭、 贝加尔湖等地区, 反馈系数为正, 为1~2 · ( 0.1 F P A R ) - 1, 中国南部地区温度反馈系数也为正, 但反馈较小, 为0.2~1 · ( 0.1 F P A R ) - 1。植被对降水的反馈系数噪音较多, 在我国华北地区为正的反馈, 反馈系数约为1.5 c m · m o n - 1 · ( 0.1 F P A R ) - 1

本文引用格式

马迪 , 吕世华 , 孟宪红 , 赵林 , 李照国 , 马媛媛 , 李美霞 . 定量评估东亚地区植被对大气变率的反馈[J]. 高原气象, 2024 , 43(5) : 1234 -1248 . DOI: 10.7522/j.issn.1000-0534.2024.00014

Abstract

This paper employs statistical methods to analyze the relationship between vegetation and climatology variables.Additionally, it quantitatively assesses vegetation feedback over East Asia using the equilibrium feedback assessment (EFA) method.The study reveals a significant correlation between vegetation and climate variables, including temperature and precipitation.In middle and high latitudes, positive feedback is observed between vegetation and temperature, while negative feedback is identified between vegetation and precipitation.In middle and low latitudes, positive feedback is observed between vegetation and precipitation, while negative feedback is identified between vegetation and temperature.In high latitudes, the positive vegetation anomaly tends to reduce the albedo by shading effect, leading to increased energy absorption and warming air during winter and spring.The analysis highlights that in low latitudes, the correlation between leading vegetation and precipitation is highly sensitive.It is mainly because the high year-round temperature in this area leads to the vegetation being dominated by precipitation signals.The study also finds a positive correlation between leading vegetation and precipitation in low latitudes.The increased vegetation stimulates moisture convergence and enhances evapotranspiration, resulting in more precipitation.The vegetation feedback parameter for temperature is positive in regions around the Da Hinggan Mountains and Baikal Lake, predominantly covered by evergreen needle-leaf forests.The feedback parameter in this area is approximately 1 to 2 · ( 0.1 F P A R ) - 1.The positive feedback parameter is identified in the southern part of China, ranging from 0.2 to 1 · ( 0.1 F P A R ) - 1.Regarding precipitation, the feedback parameter exhibits significant noise, making it challenging to distinguish signals except for the positive signal around the North China Plain.In the North China Plain, the feedback parameter for precipitation is approximately 1.5 c m · m o n - 1 · ( 0.1 F P A R ) - 1.

参考文献

null
Bonan G B1999.Frost followed the plow: impacts of deforestation on the climate of the United States[J].Ecological Applications9(4): 1305-1315.
null
Bonan G B2001.Observational evidence for reduction of daily maximum temperature by croplands in the Midwest United States[J].Journal of Climate14(11): 2430-2442.
null
Charney J G1975.Dynamics of deserts and drought in Sahel[J].Quarterly Journal of the Royal Meteorological Society101(428): 193-202.
null
Dallmeyer A Claussen M2011.The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate[J].Biogeosciences8(6): 1499-1519.
null
Dallmeyer A Claussen M Herzschuh U, et al, 2011.Holocene vegetation and biomass changes on the Tibetan Plateau-a model pollen data comparison[J].Climate of the Past7(3): 881-901.
null
Dallmeyer A Claussen M Otto J2010.Contribution of oceanic and vegetation feedbacks to Holocene climate change in monsoonal Asia[J].Climate of the Past6(2): 195-218
null
Defries R S Townshend J R G Hansen M C1999.Continuous fields of vegetation characteristics at the global scale at 1-km resolution[J].Journal of Geophysical Research-Atmospheres104(D14): 16911-16923.
null
Douville H Royer J F1996.Influence of the temperate and boreal forests on the Northern Hemisphere climate in the Meteo-France climate model[J].Climate Dynamics13(1): 57-74.10.1007/s003820050153.
null
Frankignoul C Chouaib N Liu Z Y2011.Estimating the observed atmospheric response to SST anomalies: maximum covariance analysis, generalized equilibrium feedback assessment, and maximum response estimation[J].Journal of Climate24(10): 2523-2539.DOI: 10.1175/2010jcli3696.1 .
null
Frankignoul C Czaja A L'heveder B1998.Air-sea feedback in the North Atlantic and surface boundary conditions for ocean models[J].Journal of Climate11(9): 2310-2324.
null
Kaufmann R K Zhou L Myneni R B, et al, 2003.The effect of vegetation on surface temperature: a statistical analysis of NDVI and climate data[J].Geophysical Research Letters30(22): 2147.
null
Legates D R Willmott C J1990.Mean seasonal and spatial variability in global surface air-temperature[J].Theoretical and Applied Climatology41(1-2): 11-21.
null
Liu Z Notaro M Kutzbach J, et al, 2006.Assessing global vegetation-climate feedbacks from observations[J].Journal of Climate19(5): 787-814.DOI: 10.1175/jcli3658.1 .
null
Ma D Liu Z S, et al, 2013a.Short-term climatic impacts of afforestation in the East Asian monsoon region[J].Chinese Science Bulletin58(17): 2073-2081.
null
Ma D Meng X Lv S, et al, 2023.Simulated impacts of the wetter arid area of Northwestern China on the energy budget and atmospheric circulation over Tibetan Plateau and central part of North China plain in summer[J].Atmospheric Research, 283: 106547.
null
Ma D Notaro M Liu Z Y, et al, 2013b.Simulated impacts of afforestation in East China monsoon region as modulated by ocean variability[J].Climate Dynamics41(9-10): 2439-2450.
null
Myneni R B Nemani R R Running S W1997.Estimation of global leaf area index and absorbed par using radiative transfer models[J].IEEE Transactions on Geoscience and Remote Sensing35(6): 1380-1393.
null
Myneni R B Tucker C J Asrar G, et al, 1998.Interannual variations in satellite-sensed vegetation index data from 1981 to 1991[J].Journal of Geophysical Research-Atmospheres103(D16): 6145.
null
Notaro M Liu Z Williams J W2006.Observed vegetation-climate feedbacks in the United States[J].Journal of Climate19(5): 763-786.DOI: 10.1175/JCLI3657.1 .
null
Ramankutty N Foley J A1998.Characterizing patterns of global land use: an analysis of global croplands data[J].Global Biogeochemical Cycles12(4): 667-685.
null
Snyder P K Delire C Foley J A2004.Evaluating the influence of different vegetation biomes on the global climate[J].Climate Dynamics23(3-4): 279-302.DOI: 10.1007/s00382-004-0430-0 .
null
Yan M Liu J Wang Z, et al, 2020.Biogeophysical impacts of land use/land cover change on 20th century anthropogenic climate compared to the impacts of greenhouse gas change[J].International Journal of Climatology40(15): 6560-6573.
null
Yu L Leng G Python A2022.Attribution of the spatial heterogeneity of Arctic surface albedo feedback to the dynamics of vegetation, snow and soil properties and their interactions[J].Environmental Research Letters17(1): 014036.
null
Yu Y Notaro M2020.Observed land surface feedbacks on the Australian monsoon system[J].Climate Dynamics54(5-6): 3021-3040.
null
Zhu B Cheng Y Hu X, et al, 2023.Constrained tropical land temperature-precipitation sensitivity reveals decreasing evapotranspiration and faster vegetation greening in CMIP6 projections[J].npj Climate and Atmospheric Science6(1): 91.
null
鲍艳, 王玉琦, 南素兰, 等 , 2023a.动态植被模型对青藏高原植被的模拟检验[J].高原气象42(2): 333-343.DOI: 10.7522/j.issn.1000-0534.2021.00062.Bao Y , WangY Q, NanS L, et al, 2023a.Evaluation of vegetation characteristics over Qinghai- Xizang Plateau simulated by a vegetation dynamic model[J].Plateau Meteorology, 42(2): 333-343.DOI: 10.7522/j.issn. 1000-0534.2021.00062 .
null
鲍艳, 王玉琦, 南素兰, 等 , 2023b.青藏高原植被对未来气候变暖的反馈[J].高原气象42(3): 553-563.OI: 10.7522/j.issn. 1000-0534.2021.00109.Bao Y, Wang Y Q, Nan S L,et al, 2023b.Response of vegetation over the Qinghai-Xizang Plateau to projected warming climate[J].Plateau Meteorology, 42(3): 553-563.DOI: 10.7522/j.issn.1000-0534.2021.00109 .
null
刘宜纲, 吕世华, 马翠丽, 等, 2022.区域气候模式RegCM砾石参数化方案在青藏高原不同区域土壤水分输送的模拟分析[J].高原气象41(1): 79-92.DOI: 10.7522/j.issn.1000-0534.2020.00086.Liu Y G
null
Lv S H Ma C H, et al, 2022.Gravel parameterization schemes for regional climate model RegCM and analysis of its simulation of soil moisture transportation over the different areas of Qinghai-Xizang Plateau[J].Plateau Meteorology41(1): 79-92.
null
罗斯琼, 李红梅, 马迪, 等, 2022.三江源冻土-植被相互作用及气候效应研究现状及展望[J].高原气象41(2): 255-267.DOI: 10.7522/j.issn.1000-0534.2021.00098.Luo S Q
null
Li H M Ma D, et al, 2022.Review and prospects of frozen soil-vegetation interaction and climate effects in the Three Rivers Source Region[J].Plateau Meteorology41(2): 255-267.DOI: 10.7522/j.issn.1000-0534.2021.00098 .
null
田定方, 范闻捷, 任华忠, 2020.植被光合有效辐射吸收比率遥感研究进展[J].遥感学报24(11): 1307-1324.DOI: 10.11834/jrs.20208498.Tian D F
null
Fan W J Ren H Z2020.Progress of fraction of absorbed photosynthetically active radiation retrieval from remote sensing data[J].Journal of Remote Sensing24(11): 1307-1324.DOI: 10.11834/jrs.20208498 .
null
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117.Yang Y X
null
Hu Z Y Liu F Q, et al, 2022.Progress of recent 60 years’ climate change and its environmental impacts on the Qinghai-Xizang Plateau[J].Plateau Meteorology41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117 .
null
张戈, 赖欣, 刘康, 2023.黄河源区玛曲土壤冻融过程中地表水热交换特征分析[J].高原气象42(3): 575-589.DOI: 10.7522/j.issn.1000-0534.2022.00083.Zhang G
null
Lai X Liu K2023.Characteristics of surface water and heat exchange during soil freezing and thawing of Maqu Station in the source area of the Yellow River[J].Plateau Meteorology42(3): 575-589
文章导航

/