收稿日期: 2023-08-29
修回日期: 2024-02-04
网络出版日期: 2024-09-24
基金资助
第二次青藏高原科学考察与研究计划项目(2019QZKK0103); 国家自然科学基金项目(42175173)
Impacts of Climate Change and Human Activities on NDVI Change in North China
Received date: 2023-08-29
Revised date: 2024-02-04
Online published: 2024-09-24
归一化植被指数(Normalized Differential Vegetation Index, NDVI)是反映植被生长状态的重要指标, 是反映陆地生态环境状况的“指示器”。华北地区地处我国的政治和文化中心, 土地覆盖类型复杂多样, 是我国重要的粮食生产地, 同时受到气候暖干化及加剧的人类活动影响, 华北地区的植被生态变得十分脆弱。本研究基于卫星资料NOAA CDR AVHRR NDVI和气象数据资料, 采用趋势分析、 偏相关分析和残差趋势分析等方法, 探究了1982 -2019年华北地区NDVI的时空变异特征及其对气候变化和人类活动的响应。研究结果表明: (1)1982 -2019年华北地区春季、 夏季、 秋季和生长季的植被NDVI呈显著上升趋势, 空间异质性强, 其中夏季和生长季的增长速率最快为0.024 (10a)-1, 显著增加的区域面积占比分别为57.35%和58.10%。(2)华北地区春季、 夏季和生长季NDVI与降水呈显著正相关关系, 秋季NDVI主要受气温的影响, 夏季NDVI同时受到气温、 降水和相对湿度的积极影响。(3)气候变化和人类活动对华北地区植被的生长影响具有区域差异性, 在植被改善区, 气候变化的相对作用为45.64%, 人类活动的相对作用为54.36%; 在植被退化区, 气候变化的相对作用为32.66%, 人类活动的相对作用为67.34%。(4)不同土地利用类型中, 华北地区森林和农田的植被生长较快, 其植被改善主要受人类活动的影响, 人类活动的相对作用分别为66.07%和60.82%, 草地植被的退化也主要受人类活动的影响, 相对作用为69.48%, 人类活动对华北地区植被的重要影响主要源于我国近几十年来三北防护林等人类重大生态工程的建设以及城市扩张、 人口激增的影响, 该研究成果也对华北地区生态屏障的建设以及生态环境保护提供了重要理论支撑。
江慧娴 , 董文杰 . 气候变化和人类活动对华北地区植被NDVI的影响研究[J]. 高原气象, 2024 , 43(5) : 1312 -1328 . DOI: 10.7522/j.issn.1000-0534.2024.00013
The Normalized Differential Vegetation Index (NDVI) is an essential index of vegetation growth status and an indicator of terrestrial ecological conditions.North China is China's political and cultural center, with complex and diverse land cover types, and is a critical agriculture production region in China.Meanwhile, the vegetation ecology in North China has become very fragile under the influence of climate warming and drying and intensified human activities.Based on satellite data NOAA/AVHRR NDVI and meteorological data information, this study explores the spatial and temporal variability characteristics of NDVI in North China and the effects of climate change and human activities on NDVI from 1982 to 2019 using trend analysis, partial correlation analysis, and residual trend analysis.The results showed that (1) The vegetation NDVI in spring, summer, fall, and growing seasons in North China from 1982 to 2019 exhibited a significant upward trend with strong spatial heterogeneity, among which the fastest growth rate of 0.024 (10a)-1 was observed in the summer and growing seasons.The percentage of the area with significant increase was 57.35% and 58.10%, respectively.(2) NDVI in spring, summer, and growing seasons in North China displayed a significant positive correlation with precipitation, while NDVI in fall was mainly influenced by air temperature.NDVI in summer was positively affected by both air temperature, precipitation and relative humidity.(3) The effects of climate change and human activities on vegetation growth in North China have regional differences.In the vegetation increased areas, the relative role of climate change is 45.64%, and the relative role of human activities is 54.36%.In the vegetation decreased areas, the relative role of climate change is 32.66%, and the relative role of human activities is 67.34%.(4) Among different land use types, the vegetation growth of forest and farmland in North China is faster, and the vegetation improvement is mainly affected by human activities, the relative effect of human activities is 66.07% and 60.82%, respectively.The vegetation degradation of grassland is also mainly affected by human activities, the relative effect is 69.48%.Human activities have an essential influence on the vegetation NDVI in North China, which mainly stems from the construction of major human ecological projects such as the Three North Protective Forests and the influence of urban expansion and population surge in recent decades in China, and the research results also provide necessary theoretical support for the construction of ecological barriers as well as ecological, environmental protection in North China.
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 阿多, 赵文吉, 宫兆宁, 等, 2017.1981-2013 华北平原气候时空变化及其对植被覆盖度的影响[J].生态学报, 37(2): 576-592.DOI: 10.5846/stxb201507301600.A D , |
null | |
null | 鲍艳, 王玉琦, 南素兰, 等, 2023.青藏高原植被对未来气候变暖的反馈[J].高原气象, 42(3): 553-563.DOI: 10.7522/j.issn.1000-0534.2021.00109.Bao Y , |
null | |
null | 陈红光, 孟凡浩, 萨楚拉, 等, 2022.1982-2020年气候变化下草原内陆河流域植被响应特征及其对径流的影响[J].人民珠江, 43(10): 10-17+49.DOI: 10.3969/j.issn.1001-9235.2022.10.002.Chen H G , |
null | |
null | 陈学兄, 张小军, 陈永贵, 等, 2013.陕西省1998-2008年植被覆盖度的时空变化研究[J].武汉大学学报(信息科学版), 38(6): 674-678+715+757.DOI: 10.13203/j.whugis2013.06.011.Chen X X , |
null | |
null | 迟文峰, 匡文慧, 贾静, 等, 2018.京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J].遥感技术与应用, 33(5): 965-974.DOI: 10.11873/j.issn.1004-0323.2018.5.0965.Chi W F , |
null | |
null | 郭兵, 姜琳, 戈大专, 等, 2017.全球气候变暖胁迫下的雅鲁藏布江流域植被覆盖度变化驱动机制探讨[J].热带亚热带植物学报, 25(3): 209-217.DOI: 10.11926/jtsb.3685.Guo B , |
null | |
null | 韩贵锋, 2007.中国东部地区植被覆盖的时空变化及其人为因素的影响研究[D].上海: 华东师范大学.DOI: 10.7666/d.y1073594.Han G F, 2007.Spatial and temporal changes of vegetation cover in Eastern China and their effects on human factors [D].Shanghai: East China Normal University.DOI: 10.7666/d.y1073594 . |
null | 贾志峰, 刘鹏程, 刘宇, 等, 2023.气候变化和人类活动对松辽流域植被覆盖的影响[J].生态环境学报, 32(1): 1-10.DOI: 10.16258/j.cnki.1674-5906.2023.01.001.Jia Z F , |
null | |
null | 金岩松, 金凯, 王飞, 等, 2023.气候变化和人类活动对东部沿海地区NDVI变化的影响分析[J].环境科学, 44(6): 3329-3342.DOI: 10.13227/j.hjkx.202207039.Jin Y S , |
null | |
null | 赖欣, 范广洲, 华维, 等, 2021.青藏高原陆气相互作用对东亚区域气候影响的研究进展[J].高原气象, 40(6): 1263-1277.DOI:10.7522/j.issn.1000-0534.2021.zk018. LAI X , |
null | |
null | 李华军, 林杨, 王佑安, 等, 2023.人类活动干扰下湿地植被的动态变化研究—以东洞庭湖国家级自然保护区为例[J].现代园艺, 46(4): 168-170.DOI: 10.14051/j.cnki.xdyy.2023.04.068.Li H , |
null | |
null | 李钰溦, 贾坤, 魏香琴, 等, 2015.中国北方地区植被覆盖度遥感估算及其变化分析[J].国土资源遥感, 27(2): 112-117.DOI: 10.6046/gtzyyg.2015.02.18.Li Y W , |
null | |
null | 梁植, 孙若辰, 段青云, 2023.黄河水源涵养区植被NDVI时空变化特征及其驱动因子[J].地理科学进展, 42(9): 1717-1732.DOI: 10.18306/dlkxjz.2023.09.005.Liang Z , |
null | |
null | 刘斌, 孙艳玲, 王永财, 等, 2013.基于SPOT/NDVI华北地区植被变化动态监测与评价[J].干旱区资源与环境, 27(9): 98-103.DOI: 10.13448/j.cnki.jalre.2013.09.026.Liu B , |
null | |
null | 马梓策, 孙鹏, 张强, 等, 2022.基于MODIS数据的华北地区遥感干旱监测研究[J].地理科学, 42(1): 152-162.DOI: 10.13249/j.cnki.sgs.2022.01.015.Ma Z C , |
null | |
null | 马梓策, 于红博, 曹聪明, 等, 2020.中国植被覆盖度时空特征及其影响因素分析[J].长江流域资源与环境, 29(6): 1310-1321.DOI: 10.11870/cjlyzyyhj202006006.Ma Z C , |
null | |
null | 马梓策, 于红博, 张巧凤, 等, 2019.内蒙古地区1960-2016年气温和降水特征及突变[J].水土保持研究, 26(3): 114-121.DOI: 10.13869/j.cnki.rswc.2019.03.017.Ma Z C , |
null | |
null | 欧阳玲, 马会瑶, 王宗明, 等, 2020.气候变化与人类活动对内蒙古东部草地净初级生产力的影响[J].生态学报, 40(19): 6912-6924.DOI: 10.5846/stxb201903210532.Ou Y L , |
null | |
null | |
null | |
null | 朴世龙, 方精云, 2001.最近18年来中国植被覆盖的动态变化[J].第四纪研究, 21(4): 294-302.DOI: 10.3321/j.issn: 1001-7410.2001.04.002.Pu S L , |
null | |
null | 孙红雨, 王长耀, 牛铮, 1998.中国地表植被覆盖变化及其与气候因子关系—基于NOAA时间序列数据分析[J].遥感学报, 2(3): 204-210. DOI: 10.1088/0256-307X/15/12/025.Sun H Y , |
null | |
null | 孙天瑶, 李雪梅, 许民, 等, 2020.2000-2018年塔里木河流域植被覆盖时空格局[J].干旱区地理, 43(2): 415-424.DOI: 10.12118/j.issn.1000-6060.2020.02.15.Sun T Y , |
null | |
null | 佟斯琴, 张继权, 哈斯马, 等, 2016.基于MOD16的锡林郭勒草原14年蒸散发时空分布特征[J].中国草地学报, 38(4): 83-91.DOI: 10.16742/j.zgcdxb.2016-04-13.Tong S Q , |
null | |
null | 王晓利, 侯西勇, 2019.1982-2014年中国沿海地区归一化植被指数(NDVI)变化及其对极端气候的响应[J].地理研究, 38(4): 807-821.DOI: 10.11821/dlyj020180111.Wang X L , |
null | |
null | 徐静文, 肖飞, 廖炜, 等, 2017.基于MODIS NDVI汉江中游植被时空变化及其地貌分异分析[J].长江流域资源与环境, 26(11): 1895-1901.DOI: 10.11870/cjlyzyyhj201711018.Xu J W , |
null | |
null | 徐勇, 黄雯婷, 窦世卿, 等, 2022.2000-2020年西南地区植被 NDVI 对气候变化和人类活动响应特征[J].环境科学, 43(6): 3230-3240.DOI: 10.13227/j.hjkx.202108107.Xu Y , |
null | |
null | 袁换欢, 严家宝, 张建亮, 等, 2023.上海市气候变化和人类活动对植被物候的影响[J].生态学报, 43(21): 8803-8815.DOI: 10.20103/j.stxb.202209192675.Yuan C H , |
null | |
null | 张新悦, 冯禹昊, 曾辉, 等, 2021.1982-2014年华北及周边地区生长季NDVI变化及其与气候的关系[J].北京大学学报(自然科学版), 57(1): 153-161.DOI: 10.13209/j.0479-8023.2020.108.Zhang X Y , |
null | |
null | 张一然, 文小航, 罗斯琼, 等, 2022.近20 年若尔盖湿地植被覆盖变化与气候因子关系研究[J].高原气象, 41(2): 317-327.DOI: 10.7522/j.issn.1000-0534.2021.00076.Zhang Y R , |
null | |
null | 赵安周, 张安兵, 刘海新, 等, 2017.退耕还林(草)工程实施前后黄土高原植被覆盖时空变化分析[J].自然资源学报, 32(3): 449-460.DOI: 10.11849/zrzyxb.20160411.Zhao A Z , |
null | |
null | |
null | |
null | 赵慧芳, 曹晓云, 2022.三江源国家公园植被覆盖时空变化及其气候驱动因素[J].高原气象, 41(2): 328-337.DOI: 10.7522/j.issn.1000-0534.2021.00091.Zhao H F , |
null | |
null | 赵倩倩, 张京朋, 赵天保, 等, 2021.2000年以来中国区域植被变化及其对气候变化的响应[J].高原气象, 40(2): 292-301.DOI: 10.7522/j.issn.1000-0534.2020.00025.Zhao Q Q , |
null | |
null | 赵舒怡, 宫兆宁, 刘旭颖, 2015.2001-2013年华北地区植被覆盖度与干旱条件的相关分析[J].地理学报, 70(5): 717-729.DOI: 10.11821/dlxb201505004.Zhao S Y , |
null | |
null | 郑朝菊, 曾源, 赵玉金, 等, 2017.近15 年中国西南地区植被覆盖度动态变化[J].国土资源遥感, 29(3): 128-136.DOI: 10.6046/gtzyyg.2017.03.19.Zheng C J , |
null | |
null | 朱姜韬, 杨庆怡, 李旭, 等, 2023.中国西北地区夏季降水及其东部降尺度预测模型[J].高原气象, 42(3): 646-656.DOI: 10.7522/j.issn.1000-0534.2022.00102.Zhu J T , |
null |
/
〈 |
|
〉 |