收稿日期: 2023-10-10
修回日期: 2024-03-11
网络出版日期: 2024-11-20
基金资助
云南省重点研发计划项目(202203AC100005)
Multiscale Analysis of a Non-Supercell Tornado in Yunnan
Received date: 2023-10-10
Revised date: 2024-03-11
Online published: 2024-11-20
基于再分析资料、 多源观测资料和文山多普勒天气雷达资料, 对2021年5月31日午后出现在云南省文山州广南县的一次EF0级龙卷的环流背景、 环境潜势、 中尺度对流系统的演变过程以及形成机理进行研究。结果表明: (1)此次龙卷发生在副热带高压外围偏西气流, 700 hPa风速辐合区, 850 hPa切变线上, 且中层大气有干冷空气的侵入, 具备龙卷发生所需的热力和水汽条件, 但动力条件不利于龙卷出现, 即低层和深层垂直风切变均显著弱于我国中东部的非超级单体龙卷。(2)较高的地面温度、 云图上的水汽边界和中尺度辐合线共同导致了滇东南地区对流风暴的触发。受复杂地形影响, 对流单体出现分裂并加强, 不断向西北方向海拔较高的广南县城推进。(3)龙卷形成的可能机制是: 广南盆地内较高的地面温度形成对流性不稳定, 盆地东侧对流单体下方的冷池出流进入盆地并向西扩张, 冷暖空气的交汇使新的单体开始沿辐合切变线触发, 其下方的冷池与环境温度差有利于龙卷生成。随后该对流单体沿盆地西侧的地形发展成狭长形态, 并在风暴低层形成初始涡旋, 地形强迫作用加强了初始涡旋上空的抬升运动, 使其向上倾斜拉伸的同时涡度增加, 最终形成此次龙卷。
邓意学 , 肖天贵 , 肖藜芸 . 云南一次非超级单体龙卷多尺度分析[J]. 高原气象, 2024 , 43(6) : 1536 -1549 . DOI: 10.7522/j.issn.1000-0534.2024.00037
Based on reanalysis data, multi-source observation data, and Wenshan Doppler radar data, a study was conducted on the circulation background, environmental potential, evolution process, and formation mechanism of a EF0 tornado that occurred in Guangnan County, Wenshan Prefecture, Yunnan Province, in the afternoon of May 31, 2021.The results showed that: (1) The tornado occurred in the western flow at edge of subtropical anticyclone, the 700 hPa wind speed convergence region, and the 850 hPa shear line.There was a dry and cold air intrusion in the middle atmosphere, and having the necessary thermal and water vapor conditions for a tornado to occur.However, the dynamic conditions were not conducive to the occurrence of a tornado, that is, the low-level and deep vertical wind shear were significantly weaker than that of non-supercell tornadoes in the central and eastern regions of China.(2) Higher ground temperatures, water vapor boundaries on cloud images, and mesoscale convergence lines jointly triggered convective storms in southeastern Yunnan Province.Affected by complex terrain, the convective cells appeared to be split and strengthened, and continued to advance towards the Guangnan County, which has a higher elevation in the northwest.(3) The possible mechanism for the formation of the tornado is that the high ground temperature in the Guangnan Basin created convective instability, and the cold pool outflow below the convective cells on the eastern side of the basin entered the basin and expanded westward.The intersection of warm and cold air caused new cells to begin triggering along the convergence shear line, and the temperature difference between the cold pool and the surrounding environment below it was conducive to the formation of the tornado.Subsequently, the convective cells developed into a narrow and long shape along the terrain on the western side of the basin, then an initial vortex formed in the lower level of the storm.The topographic forcing enhanced the uplift motion above the initial vortex, causing it to tilt and stretch while increasing vorticity, ultimately forming this tornado.
Key words: tornado; environmental potential; complex terrain; initial vortex
null | |
null | |
null | |
null | |
null | |
null | |
null | Markowski, |
null | |
null | |
null | |
null | |
null | 曾明剑, 吴海英, 王晓峰, 等, 2016.梅雨期龙卷环境条件与典型龙卷对流风暴结构特征分析[J].气象, 42(3): 280-293, 2016. |
null | |
null | 陈双, 孙继松, 何立富, 2022.四川盆地不同落区的三次强降水过程多尺度特征分析[J].高原气象, 41(5): 1190-1208. |
null | |
null | 戴建华, 陶岚, 丁杨, 等, 2012.一次罕见飑前强降雹超级单体风暴特征分析[J].气象学报, 70(4): 609-627.Dai J H, Tao L, Ding Y, et al, 2012.Case analysis of a large hail producing severe supercell ahead of a squall line[J].Acta Meteorologica Sinica, (4): 609-627.doi: 10.11676/qxxb2012.050 |
null | 戴建华, 王国荣, 龚剑, 等, 2021.梅雨锋中尺度涡旋内微型超级单体龙卷的形成研究[J].热带气象学报, 37(Z1): 693-709.DOI: 10.16032/j.issn.1004-4965.2021.065.Dai J H , |
null | |
null | 邓意学, 肖天贵, 汤志亚, 等, 2022.2020年7月22日淮北地区两次龙卷过程的环境背景和雷达特征的对比分析[J].暴雨灾害, 41(3): 266-275, 2022. |
null | |
null | 刁秀广, 万明波, 高留喜, 等, 2014.非超级单体龙卷风暴多普勒天气雷达产品特征及预警[J].气象, 40(6): 668-677. |
null | |
null | 符式红, 王秀明, 俞小鼎, 2018.相似环流背景下海南两次不同类型强对流天气对比研究[J].气象学报, 76(5): 742-754. |
null | |
null | 王秀明, 俞小鼎, 2019.热带一次致灾龙卷形成物理过程研究[J].气象学报, 77(3): 387-404. |
null | |
null | 杨晓军, 叶培龙, 徐丽丽, 等, 2022.一次青藏高原东北侧边坡强对流暴雨的中尺度对流系统演变特征[J] 高原气象, 41(4): 839-849.Yang X J, Ye P L, Xu L L, et al, 2022.The Variation Characteristics of Mesoscale Convection System in a Severe Convective Torrential Rain over the Northeast Slope of the Qinghai-Xizang Plateau[J].Plateau Meteorology.41(4): 839-849 |
null | 俞小鼎, 赵娟, 范雯杰, 2021.中国龙卷的时空分布与关键环境参数特征[J].热带气象学报, 37(Z1): 681-692. |
null | |
null | 俞小鼎, 郑永光, 2020.中国当代强对流天气研究与业务进展[J].气象学报, 78(3): 391-418. |
null | |
null | 袁潮, 李得勤, 杨磊, 等, 2022.冷涡背景下一次微型超级单体龙卷的雷达特征和物理过程探究[J].气象学报, 80(6): 878-895. |
null | |
null | 岳彩军, 寿亦萱, 寿绍文, 等.2006.我国螺旋度的研究及应用[J].高原气象, 25(4): 754-762. |
null | |
null | 郑永光, 蓝渝, 曹艳察, 等, 2020.2019年7月3日辽宁开原EF4级强龙卷形成条件、演变特征和机理[J].气象, 46(5): 589-602. |
null | |
null | 郑永光, 刘菲凡, 张恒进, 2021.中国龙卷研究进展[J].气象, 47(11): 1319-1335. |
null | |
null | 朱皓清, 赵宇, 2022.江苏阜宁EF4级龙卷的高分辨率数值模拟研究[J].高原气象, 41(6): 1599-1614.Zhu H Q, Zhao Y, 2022.High Resolution Numerical Simulation of an EF4 Tornado in Funing, Jiangsu Province[J].Plateau Meteorology.41(6): 1599-1614 |
/
〈 |
|
〉 |