云南一次非超级单体龙卷多尺度分析

  • 邓意学 ,
  • 肖天贵 ,
  • 肖藜芸
展开
  • 1. 云南省气象台,云南 昆明 650034
    2. 成都信息工程大学云南自然灾害防御技术研发中心,云南 昆明 650034
    3. 成都信息工程大学,四川 成都 610225
    4. 云南省气象灾害防御技术中心,云南 昆明 650034

邓意学(1997 -), 男, 四川人, 助理工程师, 主要从事强对流和强降水天气研究. E-mail:

收稿日期: 2023-10-10

  修回日期: 2024-03-11

  网络出版日期: 2024-11-20

基金资助

云南省重点研发计划项目(202203AC100005)

Multiscale Analysis of a Non-Supercell Tornado in Yunnan

  • Yixue DENG ,
  • Tiangui XIAO ,
  • Liyun XIAO
Expand
  • 1. Yunnan Meteorological Observatory,Kunming 650034,Yunnan,China
    2. Yunnan R&D Institute of Natural Disaster on Chengdu University of Information Technology,Kunming 650034,Yunnan,China
    3. Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    4. Yunnan Meteorological Disaster Prevention Technology Center,Kunming 650034,Yunnan,China

Received date: 2023-10-10

  Revised date: 2024-03-11

  Online published: 2024-11-20

摘要

基于再分析资料、 多源观测资料和文山多普勒天气雷达资料, 对2021年5月31日午后出现在云南省文山州广南县的一次EF0级龙卷的环流背景、 环境潜势、 中尺度对流系统的演变过程以及形成机理进行研究。结果表明: (1)此次龙卷发生在副热带高压外围偏西气流, 700 hPa风速辐合区, 850 hPa切变线上, 且中层大气有干冷空气的侵入, 具备龙卷发生所需的热力和水汽条件, 但动力条件不利于龙卷出现, 即低层和深层垂直风切变均显著弱于我国中东部的非超级单体龙卷。(2)较高的地面温度、 云图上的水汽边界和中尺度辐合线共同导致了滇东南地区对流风暴的触发。受复杂地形影响, 对流单体出现分裂并加强, 不断向西北方向海拔较高的广南县城推进。(3)龙卷形成的可能机制是: 广南盆地内较高的地面温度形成对流性不稳定, 盆地东侧对流单体下方的冷池出流进入盆地并向西扩张, 冷暖空气的交汇使新的单体开始沿辐合切变线触发, 其下方的冷池与环境温度差有利于龙卷生成。随后该对流单体沿盆地西侧的地形发展成狭长形态, 并在风暴低层形成初始涡旋, 地形强迫作用加强了初始涡旋上空的抬升运动, 使其向上倾斜拉伸的同时涡度增加, 最终形成此次龙卷。

本文引用格式

邓意学 , 肖天贵 , 肖藜芸 . 云南一次非超级单体龙卷多尺度分析[J]. 高原气象, 2024 , 43(6) : 1536 -1549 . DOI: 10.7522/j.issn.1000-0534.2024.00037

Abstract

Based on reanalysis data, multi-source observation data, and Wenshan Doppler radar data, a study was conducted on the circulation background, environmental potential, evolution process, and formation mechanism of a EF0 tornado that occurred in Guangnan County, Wenshan Prefecture, Yunnan Province, in the afternoon of May 31, 2021.The results showed that: (1) The tornado occurred in the western flow at edge of subtropical anticyclone, the 700 hPa wind speed convergence region, and the 850 hPa shear line.There was a dry and cold air intrusion in the middle atmosphere, and having the necessary thermal and water vapor conditions for a tornado to occur.However, the dynamic conditions were not conducive to the occurrence of a tornado, that is, the low-level and deep vertical wind shear were significantly weaker than that of non-supercell tornadoes in the central and eastern regions of China.(2) Higher ground temperatures, water vapor boundaries on cloud images, and mesoscale convergence lines jointly triggered convective storms in southeastern Yunnan Province.Affected by complex terrain, the convective cells appeared to be split and strengthened, and continued to advance towards the Guangnan County, which has a higher elevation in the northwest.(3) The possible mechanism for the formation of the tornado is that the high ground temperature in the Guangnan Basin created convective instability, and the cold pool outflow below the convective cells on the eastern side of the basin entered the basin and expanded westward.The intersection of warm and cold air caused new cells to begin triggering along the convergence shear line, and the temperature difference between the cold pool and the surrounding environment below it was conducive to the formation of the tornado.Subsequently, the convective cells developed into a narrow and long shape along the terrain on the western side of the basin, then an initial vortex formed in the lower level of the storm.The topographic forcing enhanced the uplift motion above the initial vortex, causing it to tilt and stretch while increasing vorticity, ultimately forming this tornado.

参考文献

null
Colquhoun J R Riley P A2009.Relationships between Tornado Intensity and Various Wind and Thermodynamic Variables[J].Weather & Forecasting11(3): 360-371.
null
Davies-Jones R1984.Streamwise vorticity: The origin of updraft rotation in supercell storms[J].Journal of The Atmospheric Sciences, 41: 2991–3006
null
Davis-Jones R Burgess D W Foster M1990.Test of helicity as a tornado forecast parameter[C].Preprints, 16th Conf.Severe Local Storms, Kananaskis Park, Alberta, Canada, American Meteorological Society, 588-592.
null
Grams J S Thompson R L Snively D V, et al, 2012. A Climatology and Comparison of Parameters for Significant Tornado Events in the United States[J].Weather & Forecasting27(1): 106-123.
null
Lemon L R Doswell III C A1979.Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis[J].Monthly Weather Review107(9): 1184-1197.
null
Markowski P M Richardson Y P2009.Tornadogenesis: our current understanding, forecasting considerations, and questions to guide future research[J].Atmospheric Research93(1-3): 3-10.
null
Markowski, Paul M2002.Hook Echoes and Rear-Flank Downdrafts: A Review[J].Monthly Weather Review130(4): 852.DOI: 10.1175/1520-0493(2002)1302.0.CO;2 .
null
Schultz D M Richardson Y P Markowski P M, et al, 2014.Tornadoes in the central United States and the “Clash of Air Masses”[J].Bulletin of the American Meteorological Society95(11): 1704-1712.
null
Trapp R J Weisman M L2003.Low-level mesovortices within squall lines and bow echoes.Part Ⅱ: Their genesis and implications[J].Monthly Weather Review131(11): 2804-282.
null
Wakimoto R M Wilson J W1989.Non-supercell tornadoes[J].Monthly Weather Review117(6): 1113-1140.
null
Weisman M L Davis C A1998.Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems[J].Journal of The Atmospheric Sciences, 35: 2 603-2 622.
null
曾明剑, 吴海英, 王晓峰, 等, 2016.梅雨期龙卷环境条件与典型龙卷对流风暴结构特征分析[J].气象42(3): 280-293, 2016.
null
Zeng M J Wu H Y Wang X F, et al, 2016.Analysis on Environmental Conditions and Structural Features of Typical Convective Tornado Storm in Meiyu Period[J].Meteorological Monthly42(3): 280-293.
null
陈双, 孙继松, 何立富, 2022.四川盆地不同落区的三次强降水过程多尺度特征分析[J].高原气象41(5): 1190-1208.
null
Chen S Sun J S He L F2022.Analysis of Multi-scale Characteristics of Three Different Types of Heavy Rainfall in SichuanBasin[J].Plateau Meteorology41(5): 1190-1208
null
戴建华, 陶岚, 丁杨, 等, 2012.一次罕见飑前强降雹超级单体风暴特征分析[J].气象学报70(4): 609-627.Dai J H, Tao L, Ding Y, et al, 2012.Case analysis of a large hail producing severe supercell ahead of a squall line[J].Acta Meteorologica Sinica, (4): 609-627.doi: 10.11676/qxxb2012.050
null
戴建华, 王国荣, 龚剑, 等, 2021.梅雨锋中尺度涡旋内微型超级单体龙卷的形成研究[J].热带气象学报37(Z1): 693-709.DOI: 10.16032/j.issn.1004-4965.2021.065.Dai J H
null
Wang G R Gong J, et al, 2021.Analysis of the formation of mini-supercells and associated tornadogenesis within a mesoscale vortex embedded in a meiyu front[J].Journal of Tropical Meteorology37(5-6): 693-709.DOI: 10.16032/j.issn.1004-4965. 2021.065 .
null
邓意学, 肖天贵, 汤志亚, 等, 2022.2020年7月22日淮北地区两次龙卷过程的环境背景和雷达特征的对比分析[J].暴雨灾害41(3): 266-275, 2022.
null
Deng Y X Xiao T G Tang Z Y, et al, 2022.Comparative analysis of environmental background and radar characteristics of two tornadoes in Huaibei area on 22 July 2020[J].Torrential Rain and Disasters41(3): 266-275.DOI: 10.3969/j.issn.1004-9045.2022.03.003
null
刁秀广, 万明波, 高留喜, 等, 2014.非超级单体龙卷风暴多普勒天气雷达产品特征及预警[J].气象40(6): 668-677.
null
Diao X G Wan M B Gao L X, et al, 2014.Doppler Radar Product Features and Warning of Non Supercell Tornadic Storms[J].Meteorological Monthly40(6): 668-677.
null
符式红, 王秀明, 俞小鼎, 2018.相似环流背景下海南两次不同类型强对流天气对比研究[J].气象学报76(5): 742-754.
null
Fu S H Wang X M Yu X D2018.A comparative study on two consecutive severe convective weather events in Hainan under similar background[J].Acta Meteorologica Sinica76(5): 742-754.doi: 10.11676/qxxb2018.032
null
王秀明, 俞小鼎, 2019.热带一次致灾龙卷形成物理过程研究[J].气象学报77(3): 387-404.
null
Wang X M Yu X D2019.A study on the physical process involved in the genesis of a severe tropical tornado[J].Acta Meteorologica Sinica77(3): 387-404.DOI 10.11676/qxxb2019.031.
null
杨晓军, 叶培龙, 徐丽丽, 等, 2022.一次青藏高原东北侧边坡强对流暴雨的中尺度对流系统演变特征[J] 高原气象41(4): 839-849.Yang X J, Ye P L, Xu L L, et al, 2022.The Variation Characteristics of Mesoscale Convection System in a Severe Convective Torrential Rain over the Northeast Slope of the Qinghai-Xizang Plateau[J].Plateau Meteorology.41(4): 839-849
null
俞小鼎, 赵娟, 范雯杰, 2021.中国龙卷的时空分布与关键环境参数特征[J].热带气象学报37(Z1): 681-692.
null
Yu X D Zhao J Fan W J2021.Tornadoes in china: spatiotemporal distribution and environmental characteristics[J].Journal of Tropical Meteorology37(5-6): 681-692.DOI: 10.16032/j.issn.1004-4965.2021.064 .
null
俞小鼎, 郑永光, 2020.中国当代强对流天气研究与业务进展[J].气象学报78(3): 391-418.
null
Yu X D Zheng Y G2020.Advances in severe convective weather research and operational service in China[J].Acta Meteorologica Sinica78(3): 391-418.DOI: 10.11676/qxxb2020.035 .
null
袁潮, 李得勤, 杨磊, 等, 2022.冷涡背景下一次微型超级单体龙卷的雷达特征和物理过程探究[J].气象学报80(6): 878-895.
null
Yuan C Li D Q Yang L, et al, 2022.A case study on the radar characteristics and physical process involved in the genesis of a mini supercell tornado under the background of cold vortex[J].Acta Meteorologica Sinica80(6): 878-895.DOI: 10.11676/qxxb2022.063 .
null
岳彩军, 寿亦萱, 寿绍文, 等.2006.我国螺旋度的研究及应用[J].高原气象25(4): 754-762.
null
Yue C J Shou Y X Shou S W, et al, 2006.Research and Application on Helicity in China[J].Plateau Meteorology25(4): 754-762.
null
郑永光, 蓝渝, 曹艳察, 等, 2020.2019年7月3日辽宁开原EF4级强龙卷形成条件、演变特征和机理[J].气象46(5): 589-602.
null
Zheng Y G Lan Y Cao Y C, et al, 2020.Environmental Conditions, Evolution and Mechanisms of the EF4 Tornado in Kaiyuan of Liaoning Province on 3 July 2019[J].Meteorological Monthly46(5): 589-602.
null
郑永光, 刘菲凡, 张恒进, 2021.中国龙卷研究进展[J].气象47(11): 1319-1335.
null
Zheng Y G Liu F F Zhang H J2021.Advances in Tornado Research in China[J].Meteorological Monthly47(11): 1319-1335.
null
朱皓清, 赵宇, 2022.江苏阜宁EF4级龙卷的高分辨率数值模拟研究[J].高原气象41(6): 1599-1614.Zhu H Q, Zhao Y, 2022.High Resolution Numerical Simulation of an EF4 Tornado in Funing, Jiangsu Province[J].Plateau Meteorology.41(6): 1599-1614
文章导航

/