不同区域海温对中国东部冬季雾日年际变化影响的对比研究

  • 岑琦胜 ,
  • 刘鹏
展开
  • 1. 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/ 气象灾害预报预警与评估协同创新中心,江苏 南京 210044
    2. 南京大学大气科学学院,江苏 南京 210023

岑琦胜(2001 -), 男, 浙江慈溪人, 硕士研究生, 主要从事台风动力学研究. E-mail:

收稿日期: 2023-11-20

  修回日期: 2024-03-11

  网络出版日期: 2024-11-23

基金资助

国家电网公司总部科技项目(5108-202218280A-2-68-XG)

Research on the Influence of SST in Different Regions on the Interannual Variability of Winter Fog Days over Eastern China

  • Qisheng CEN ,
  • Peng LIU
Expand
  • 1. Key Laboratory of Meteorological Disaster,Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD),Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China
    2. School of Atmospheric Sciences,Nanjing University,Nanjing 210023,Jiangsu,China

Received date: 2023-11-20

  Revised date: 2024-03-11

  Online published: 2024-11-23

摘要

利用观测资料, 发现中国东部冬季雾日数明显高于其余月份, 且冬季雾日数的气候统计诊断变量分布不均匀, 从而可将中国东部分为南、 北方两个区域。又根据雾日数变化趋势的强弱, 以及南北方间雾日数相关性的特点, 可将冬季分为早冬(11 -12月)和晚冬(次年1 -2月)。通过分析早晚冬时南北方雾日与海表温度的关系发现, 在早冬, 南北方两区域的雾日都受热带太平洋区域海温显著影响; 在晚冬, 北方雾日受北大西洋区域海温影响显著, 而南方仍受热带太平洋区域海温显著影响。通过分析环流发现, 早冬时, 热带太平洋区域海温的暖异常, 有利于中低纬西太副高显著增强北抬, 促使中高纬日本北部上空出现深厚的反气旋异常、 西伯利亚高压明显减弱, 从而使整个中国东部出现一致的偏南风异常, 有利于南北方雾日都增加。在晚冬, 热带太平洋对东亚中高纬地区的影响显著减弱, 异常偏南风仅能维持在南方, 仅使南方雾日偏多, 并不能影响北方的雾日变化; 而此时北大西洋区域海温暖异常通过波列的作用, 对东亚中高纬地区的影响显著, 使得北方地区受到异常东南风控制, 有利于北太平洋水汽的输送, 配合冬季气候态极强的下沉气流, 大气层结相对稳定, 使得北方地区雾日显著增多。

本文引用格式

岑琦胜 , 刘鹏 . 不同区域海温对中国东部冬季雾日年际变化影响的对比研究[J]. 高原气象, 0 : 1493 -1506 . DOI: DOI:10.7522/j.issn.1000-0534.2024.00036

Abstract

Based on observational data, it is evident that fog occurrence in Eastern China is notably higher during winter compared to other months.Spatial analysis of climatological statistics reveals a distinct heterogeneity, dividing Eastern China into northern and southern regions based on fog day patterns.Furthermore, winter can be subdivided into early (November and December) and late (January and February) periods, characterized by varying trends in fog occurrence and interregional correlations.Examining the relationship between sea surface temperature (SST) and fog days across both southern and northern China throughout winter, significant influences emerge.During early winter, fog days in both regions are markedly impacted by SST anomalies in the tropical Pacific.Conversely, in late winter, while the north Atlantic SST exerts a considerable influence on fog days in northern China, southern China continues to be strongly affected by tropical Pacific SST.Analyzing atmospheric circulation patterns reveals distinct mechanisms driving fog occurrences in different seasons.In early winter, warm SST anomalies in the tropical Pacific drive northward movement of the Western North Pacific Subtropical High, resulting in anticyclonic anomalies over northern Japan and weakened Siberian High, leading to increased fog days in both southern and northern areas of Eastern China.Conversely, in late winter, weakened influence from the tropical Pacific shifts the anomalous southerly winds only over southern China, while the north Atlantic SST anomalies induce anomalous southeasterly winds over northern areas, enhancing moisture transport from the north Pacific, with relatively stable atmospheric structure, thus significantly increasing fog days over northern China.

参考文献

null
Ching H J N Gabriel A V ángel G M, et al, 2019.An asymmetric rainfall response to ENSO in East Asia[J].Climate Dynamics52(3/4): 2303-2318.DOI: 10.1007/s00382-018-4253-9 .
null
He S P Wang H J2013.Oscillating relationship between the East Asian Winter Monsoon and ENSO[J].Journal of Climate26(24): 9819-9838.DOI: 10.1175/JCLI-D-13-00174.1 .
null
Hu S Q Zhang W J Andrew G T, et al, 2020.How does El Ni?o?Southern Oscillation affect winter fog frequency over eastern China[J].Climate Dynamics54(1/2): 1043-1056.DOI: 10.1007/s00382-019-05043-1 .
null
Hu S Q Zhang W J Geng X, et al, 2022.Dominant modes of interannual variability of winter fog days over eastern China and their association with major SST variability[J].Climate Dynamics58(1/2): 413-426.DOI: 10.1007/s00382-021-05915-5 .
null
Huang B Y Peter W T Viva F B, et al, 2017.Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons[J].Journal of Climate30(20): 8179-8205.DOI: 10.1175/JCLI-D-16-0836.1 .
null
Ishii M Shouji A Sugimoto S, et al, 2005.Objective analyses of sea?surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection[J].International Journal of Climatology25(7): 865-879.DOI: 10. 1002/joc.1169 .
null
Jing Y J Li Y C Xu Y F, et al, 2019.Influences of different definitions of the winter NAO index on NAO action centers and its relationship with SST[J].Atmospheric and Oceanic Science Letters12(5): 320-328.DOI: 10.1080/16742834.2019.1628607 .
null
Kalnay E Kanamitsu M Kistler R, et al, 1996.The NCEP/NCAR 40?year reanalysis project[J].Bulletin of the American Meteorological Society77(3): 437-471.DOI: 10.1175/1520-0477(1996)077<0437: TNYRP>2.0.CO; 2 .
null
Liu P Sui C H2014.An observational analysis of the oceanic and atmospheric structure of global?scale multi?decadal variability[J].Advances in Atmospheric Sciences31(2): 316-330.DOI: 10. 1007/s00376-013-2305-y .
null
Liu P Tang M Y Yu H Y, et al, 2020.Influence of Arctic Oscillation on frequency of wintertime fog days in Eastern China[J].Atmosphere11(2): 162.DOI: 10.3390/atmos11020162 .
null
Liu P Zhang Y Tang M Y2022.Effects of Atlantic multidecadal oscillation and Pacific decadal oscillation on interdecadal variability of fog frequency in autumn?winter season in Southwest China[J].International Journal of Climatology42(4): 2083-2098.DOI: 10.1002/joc.7353 .
null
Lou M Y Li C Hao S F, et al, 2017.Variations of winter precipitation over southeastern China in association with the North Atlantic Oscillation[J].Journal of Meteorological Research31(3): 476-489.DOI: 10.1007/s13351-017-6103-9
null
Miao J P Jiang D B2021.Multidecadal variations in the East Asian Winter Monsoon and their relationship with the Atlantic Multidecadal Oscillation since 1850[J].Journal of Climate34(18): 7525-7539.DOI: 10.1175/JCLI-D-21-0073.1 .
null
Niu F Li Z Q Li C, et al, 2010.Increase of wintertime fog in China: potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading[J].Journal of Geophysical Research: Atmospheres115(D7): 1-12 DOI: 10.1029/2009JD013484 .
null
Rayner N A Parker D E Horton E B, et al, 2003.Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J].Journal of Geophysical Research: Atmospheres108(D14): 4407.DOI: 10.1029/2002JD002670 .
null
Wang B Wu R G Fu X H2000.Pacific?East Asian teleconnection: how does ENSO affect East Asian climate[J].Journal of Climate13(9): 1517-1536.DOI: 10.1175/1520-0442(2000)013<1517: PEATHD>2.0.CO; 2 .
null
Wu R G Hu Z Z Ben P K2003.Evolution of ENSO?Related rainfall anomalies in East Asia[J].Journal of Climate16(22): 3742-3758.DOI: 10.1175/1520-0442(2003)016<3742: EOERAI>2.0.CO; 2 .
null
Yu H Y Liu P Zhang Y2021.The combined effects of ENSO and Arctic Oscillation on wintertime fog days in eastern China[J].Theoretical and Applied Climatology114(3/4): 1233-1251.DOI: 10.1007/s00704-021-03588-y .
null
Yu H Y Tim L Liu P2019.Influence of ENSO on frequency of wintertime fog days in Eastern China[J].Climate Dynamics52(9/10): 5099-5113.DOI: 10.1007/s00382-018-4437-3 .
null
Zhang G W Zeng G Li C, et al, 2020.Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40?year period[J].Climate Dynamics54(5/6): 3003-3020.DOI: 10.1007/s00382-020-05155-z .
null
Zuo J Q Xie F Yang L N, et al, 2022.Modulation by the QBO of the relationship between the NAO and northeast China temperature in late winter[J].Journal of Climate35(24): 7995-8011.DOI: 10.1175/JCLI-D-22-0353.1 .
null
陈诚, 2019.海冰及海温外强迫在中国冬季严重雾和霾天气形成中的作用研究[D].南京: 南京信息工程大学.Chen C, 2019.Study on the role of external forcing from sea ice and sea surface temperature on the formation of severe fog and hazy event in winter in China[D].Nanjing: Nanjing University of Information Science & Technology.
null
陈潇潇, 郭品文, 罗勇, 2008.中国不同等级雾日的气候特征[J].气候变化研究进展4(2): 106-110.
null
Chen X X Guo P W Luo Y2008.Climate characteristics of fog days of various categories in China[J].Climate Change Research4(2): 106-110.
null
刘付永在, 2016.西太暖池风场时空特征分析及其对华南雾的影响[D].湛江: 广东海洋大学.LiuFu Y Z, 2016.Spatio?temporal characteristics of wind field in the West Pacific Warm Pool and its impact on south China fog[D].Zhanjiang: Guangdong Ocean University.
null
刘小宁, 张洪政, 李庆祥, 等, 2005.我国大雾的气候特征及变化初步解释[J].应用气象学报16(2): 220-230+271.
null
Liu X N Zhang H Z Li Q X, et al, 2005.Preliminary research on the climatic characteristics and change of fog in China[J].Journal of Applied Meteorological Science16(2): 220-230+271.
null
毛冬艳, 杨贵名, 2006.华北平原雾发生的气象条件[J].气象32(1): 78-83.DOI: 10.7519/j.issn.1000-0526.2006.1.013.Mao D Y
null
Yang G M2006.Meteorological conditions for fog formation over North China Plain[J].Meteorological Monthly32(1): 78-83.DOI: 10.7519/j.issn.1000-0526.2006.1.013 .
null
王丽萍, 陈少勇, 董安祥, 2005.中国雾区的分布及其季节变化[J].地理学报60(4): 689-697.DOI: 10.11821/xb200504018.Wang L P
null
Chen S Y Dong A X2005.The distribution and seasonal variations of fog in China[J].Acta Geographica Sinica60(4): 689-697.DOI: 10.11821/xb200504018 .
null
吴兑, 赵博, 邓雪娇, 等, 2007.南岭山地高速公路雾区恶劣能见度研究[J].高原气象26(3): 649-654.
null
Wu D Zhao B Deng X J, et al, 2007.A study on bad visibility over foggy section of freeway in Nanling Mountainous Region[J].Plateau Meteorology26(3): 649-654.
null
严明良, 缪启龙, 袁成松, 等, 2011.沪宁高速公路一次大雾过程的数值模拟及诊断分析[J].高原气象30(2): 428-436.
null
Yan M L Miao Q L Yuan C S, et al, 2011.Numerical simulation and diagnostic analysis of a heavy fog process in Shanghai-Nanjing Expressway[J].Plateau Meteorology30(2): 428-436.
null
袁媛, 周宁芳, 李崇银, 2017.中国华北雾霾天气与超强El Ni?o事件的相关性研究[J].地球物理学报60(1): 11-21.DOI: 10.6038/cjg20170102.Yuan Y
null
Zhou N F Li C Y2017.Correlation between haze in North China and super El Ni?o events[J].Chinese Journal of Geophysics60(1): 11-21.DOI: 10.6038/cjg20170102 .
null
张璐, 刘鹏, 张文君, 等, 2019.中国不同区域气候条件对冬季雾日形成的差异性分析[J].气候与环境研究24(5): 585-596.DOI: 10.3878/j.issn.1006-9585.2018.18038.Zhang L
null
Liu P Zhang W J, et al, 2019.Analysis of variations of winter fog days formation across different regional climatic conditions in China[J].Climatic and Environmental Research24(5): 585-596.DOI: 10.3878/j.issn.1006-9585.2018.18038 .
null
张梦, 陶丽, 邵海燕, 2022.北大西洋涛动/北极涛动与中国冷事件频数年际和年代际变化的联系及其差异[J].高原气象41(4): 850-863.DOI: 10.7522/j.issn.1000-0534.2021.00035.Zhang M
null
Tao L Shao H Y2022.Relationship between NAO/AO and interannual and interdecadal variations of cold wave frequency (CWF) in China[J].Plateau Meteorology41(4): 850-863.DOI: 10.7522/j.issn.1000-0534.2021.00035 .
null
张人禾, 李强, 张若楠, 2014.2013年1月中国东部持续性强雾霾天气产生的气象条件分析[J].中国科学: 地球科学44(1): 27-36.DOI: 10.1360/zd-2014-44-1-27.Zhang R H , LiQ, ZhangR N, 2014.Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013[J].Science China: Earth Sciences, 44(1): 27-36.DOI: 10.1360/zd-2014-44-1-27 .
null
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017. GB/T 35224-2017 地面气象观测规范 天气现象 [S].北京: 中国标准出版社, 7+9+14.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2017.GB/T 35224-2017 Specifications for surface meteorological observation-Weather phenomena[S].Beijing: Standards Press of China, 7+9+14.
文章导航

/