40年青藏高原雪深变化及对气候变化的响应分析

展开
  • 1. 青海省气象科学研究所,青海 西宁 810001
    2. 青海省防灾减灾重点实验室,青海 西宁 810001
    3. 中国科学院西北生态环境资源研究院,甘肃 兰州 730099
    4. 西宁市气象局,青海 西宁 810001
    5. 青海师范大学地理科学学院,青海 西宁 810001

网络出版日期: 2025-04-11

基金资助

青海省科技计划项目(2024-ZJ-740);国家自然科学基金项目(U22A20556U21A2021

Snow Depth and its Response to Climate Change over the Qinghai-Xizang TibetanPlateau in Recent 40 Years

Expand
  • 1. Institute of Qinghai Meteorological Science ResearchXining 810001QinghaiChina
    2. Key Laboratory of Disaster Prevention and Mitigation of Qinghai ProvinceXining 810001QinghaiChina
    3. Chinese Academy of Sciences Northwest Institute of Ecological Environment and resourcesLanzhou 730099GansuChina
    4. Xining Meteorological BureauXining 810001QinghaiChina
    5. College of Qinghai Normal University Geography SciencesXining 810001QinghaiChina

Online published: 2025-04-11

摘要

基于中国雪深长时间序列数据集和高分辨率地面气象要素驱动数据集,分流域和海拔梯度分析了1980-2020 年积雪季青藏高原雪深的时空变化规律,并结合水热因子探究了雪深对气候变化的响应。结果表明:(11980-2020年积雪季青藏高原雪深空间差异明显,呈西高东低、高海拔山脉地区大于盆地平原的分布格局,高海拔山脉地区平均雪深普遍大于 10 cm64. 74% 的区域平均雪深呈波动减小趋势,显著减小区域占比为29. 09%,高原雪深平均减小速率为0. 25 cm·10a-1。(2)雪深及其变化趋势受海拔影响存在明显的垂直地带性,平均雪深随海拔上升先增大后减小再增大,4. 2 km4. 8 km的海拔是分界线;不同海拔区域的雪深均呈减小趋势,雪深减小速率随海拔上升先增大后减小,5. 0 km的海拔是分界线,5. 0~5. 2 km海拔的平均雪深减小速率最快,达3. 36 cm·10a-1,平均雪深年际变化存在明显的海拔依赖性,高海拔地区的雪深减小速率明显高于低海拔地区,尤其是 4. 8~5. 5 km 地区的雪深。(31980-2020年积雪季青藏高原气候变化表现出整体暖湿化、但西北部和南部暖干化的态势,但雪深对气候变化的响应具有流域差异和海拔差异,其中,怒江、恒河、阿姆河和印度河流域暖干化的气候条件导致雪深减少;雅鲁藏布江、高原内陆、长江流域、柴达木和塔里木盆地气温对雪深的影响更显著;而黄河、黑河流域降水对雪深的影响更显著。小于3. 5 km的地区暖干化的气候条件导致雪深减小,而大于3. 5 km的地区气温对雪深的影响更显著,气温的海拔依赖性增暖现象解释了雪深的海拔依赖性减小现象。

本文引用格式

曹晓云, 张 娟, 王 镜, 史飞飞, 刘致远, 孙子婷 . 40年青藏高原雪深变化及对气候变化的响应分析[J]. 高原气象, 0 : 1 . DOI: 10.7522/j.issn.1000-0534.2025.00024

Abstract

Based on the China snow depth time series data set and high resolution ground meteorological element driven datasetthis study analyzes the spatial and temporal variation of snow depth on the Qinghai-Xizang TibetanPlateau by watershed and elevation gradient during the 1980-2020 snow season considering different river basins and elevation gradients. Additionallythe study investigates the response of snow depth to climate change in the context of hydrothermal factors. The results show that:(1Spatial difference in snow depth on the Qinghai-XizangTibetanPlateau was obviousshowing a distribution pattern of high in the west and low in the eastand greater in the high-altitude mountain areas than in the basin plainswith the average snow depth in the high-altitude mountain areas generally greater than 10 cm. The average snow depth decreased at a rate of 0. 25 cm/decade64. 74% of the regions showed a declining trendwith statistically significant decreases in 29. 09% on the Qinghai-XizangTibetanPlateau during the snow season from 1980 to 2020.2There is a clear vertical zonation of snow depth and its trend as influenced by altitude. Below an altitude of 4. 2 kmaverage snow depth increased with elevation. Between 4. 2 km and 4. 8 kmaverage snow depth decreased as elevation rises. Above 4. 8 kmaverage snow depth again increased with elevation. A decreasing trend in snow depth was observed across all elevation bandswith the rate of decrease initially increasing and then decreasing with elevationexhibiting a threshold at approximately 5. 0 km. The most rapid decrease in mean snow depth3. 36 cm·10a-1occurred in the 5. 0~5. 2 km elevation band. The interannual variation of mean snow depth exhibited a pronounced altitude-dependent patternthe rate of snow depth reduction was significantly higher at higher elevations than at lower elevationsespecially at 4. 8~5. 5 km.3Climate change on the Qinghai-XizangTibetanPlateau is ‘warmer and wetter’ overallbut ‘warmer and drier’ in the north-west and south during the snow sea‐ son from 1980 to 2020. Howeverthere are watershed differences and elevation differences in the response of snow depth to climate change. Specificallyin the NujiangGangesAmu Daryaand Indus River basinsthe warming and aridification of climate conditions have contributed to a reduction in snow depth. Converselytemperature has a more pronounced effect on snow depth in the Yarlung Tsangpo Riverthe interior plateauas well as the Yangtze River basinsthe Qaidam Basinand the Tarim Basin. Additionallyprecipitation plays a more significant role in influencing snow depth in the Yellow RiverHeihe River basin. In regions with altitudes below 3. 5 kmclimate conditions characterized by warming and aridification have led to a reduction in snow depth. Howeverin areas with altitudes above 3. 5 kmtemperature has a more pronounced influence on snow depth. The altitude-dependent warming of temperature accounts for the altitude-dependent reduction in snow depth.

文章导航

/